INTERACTIONS BETWEEN PRONGHORN ANTELOPE AND FERAL HORSES IN NORTHWESTERN NEVADA

BY

University of Nevada

Reno

$$
\begin{gathered}
\text { GLM LIBRAR } \\
\text { N. S.O. }
\end{gathered}
$$

Interactions Between Pronghorn Antelode and

 Feral Horses in Northwestern idevada\author{
Rectaved

Bur of hatich hanajontome
 | A.M. FEB | 22 |
| :--- | :--- |
 nevada state orfice
 RENO, MEVADA

}

A thesis submitted in partial fulfiliment of the recuirements for the degree of He'ster of Science
in Wildiffe Management

Jo O. Meeker

The thesis of jo Oran Meeker is approved:

University of :levada
Reno

AC'NOWLEDGEMENTS

I am grateful to the members of the Renewable Natural Resources Depariment, University of ilevada, Reno, for their encouragement and assistance in the conduct of this study. Special thanks go to the members of my graduate conmittee: Dr. Donald A. Klebenow (Chairman) and Dr. J. Wayne Burikhardt of the Renewable Natural Resources Department and Dr. Stepnen H. Jenkins of the Bioiogy Department. They were all willing to listen to me at any time and generally allowed me to convince myself of a course of action on the subject of that particuiar discussion. Thanks are especially due to Dr. Robert C. Beall, formerly of the Renewable Naturai Resources Department, who served as my major advisor and director of research prior to his departure from the University. ily many discussions with Dr. Beall ied to my research projec:, and his standard conment, "Ain't research fun?" helped in máintaining my entnusiasm during the less entinraliing portions of my field research. Thanks also go to the U.S. Fist and Wildife Service personnel of the Charles Sheltion Antelope Range for their assistance and adjustment of scnediules to fit my research needs.

Last, but definitely not least, I want to thank my family: my wife, Pat, for her willingness to become a "research widow" and for her assistance in research and preparation of this paper; my daughter, Amanda, for her assistance in laboratory work; and my son, David, for his two surmers with me in the field, where he became a "mini-biologist" and a friend of animais.

A study of interactions between pronghorn antelope (Anziioccura anericana) and feral horses (Eçuus sajazius) was conducted during two sumners at the Sheldon Antelope Range in northwestern llevada. Visual observations were used to determine watering and foraging interactions and fecal analysis was performed to determine diet overlap. A total of 142 measurable instances of watering were recorded and analyzed to determine if the juxtaposition of horses affected antelope drinking and loafing times. ifumerous grazing and meeting situations between the two species were observed to determine if either interfered with the activities of the other. Results indicated a lack of interierence competition between antelope and horses at water or under grazing or moving situations. No aczs of aggression were observed between the species. There was some avidence of a degree of symbiotic reiationship existing between them. Fesai analysis indicated dietary overlad of approximateiy i 2.8 percent, with phicx (3hiow hooaizi), the second most abundant fors in the study area, being the oniy plant species to contribute over five percent to each species' diet.

tABLE OF CONTENTS

Acknowiedgment ii
Abstract iii
Table of Contents iv
Introduction 1
Literature Review 3
Study Area 9
Methods and Materials 13
Resuits and Discussion 18
Conclusion 39
Literature Cited 40
Appencix A 44
Appencix B 48

IITRODUCTION

The ever-increasing human population of the United States has, without doubt, had a detrimental effect on wildlife popuiations. Humans have appropriated for their own use that land which they desired. actions have resuited in decreased quantity and quality of natural nabitat for wildiffe, especially the larger or less numan-tolerant species.

The pronghorn antelope (Antiiocapra anericana) is one species whose population has been greatly affected by human expansion. ielison (1925) estimated that there were 35 million pronghorn in North America in 1605. During the next century, this population decreased to some 13,000 (Hoover et al. 1959). From that low point, the popuiation increased to an estimated 385,500 by 1964 (Yoakum 1972).

Proper management of this remnant herd of a once enormous popuiation is necessary if the anteiope is to remain an important large game animal. Tine resource manager must have all available information concerning the ecoiogy of the prongnorn, inciuding its interactions with other ungulates, in order to accomplish this required management. It is the intent of this paper to report the results of a study of interactions between pronghorn antelope and feral horses (Ěqus saicizüs) during the sumner months in a sagebrush-bunchgrass community in northwestern llevadá.

The term "feral" is used in preference to the term "wild" because the wild horse became extinct in North America by the end of the Pleistocene epoch and did not appear again until reintroduced by eariy Soanish colonists (Hickman and Hickman 1972). From this reintroduczion, the pobulation of feral horses has grown to numbers in excess of 60,000 ,
primarily in the western United States (Monroe 197\%). Tinis growing podulation of horses is a factor that must be considered by western rangeland managers (Cook 1975).
it is, therefore, my desire that this study will contribute to our knowiedge of both prongnorn and horses and their interactions. Should this be the case, it will serve as a management tool for those resource managers operating in the intermountain sagebrush-bunchgrass biome.

The food habits of pronghorn have been well documented for the sagebrush-bunchgrass vegetative community. Ferrel and Leach (1950 and 1952) analyzed stomach contents of 83 antelope taken in California during spring, fall, and winter. They reported that browse, principally big sagebrush (Amemisic terientaza), made up the bulk of the spring and winter diet, while forbs comprised over half of the fall diet. Mason (1952), in studying the Hart Mountain, Oregon antelope, found the most important year-round food source to be sagebrush with forbs contributing heavily to the diet during the summer months. In their study of food preference of penned antelope in Wyoming's Red Desert, Severson and May (1967) found the most important summer foods to be Dougias rabbitbrush (Chmysothomnus visciäi:Torus) and big sagebrush. Olsen and Hansen (1977) found that sagebrush was the most important food source for prongnorn and that diet diversity increased during the summer. The Qisen and Hansen study provides the only available reference to diet overlap between anteiope and feral norses in the sagebrush-buncngrass community. They reported an extremely small similarity ($4=4 \%$) in the diets of these two species. This observation is supported by a study in the coid desert region of eastern Nevada, where the Bureau of Land Managemen: found the summer diet of feral horses was composed of 92 percent grasses, while the pronghorn's diet was 95 percent shrubs and forbs (G. i. Crodper, pers. conm.). It appears that littie overiap of diets is to be expected in areas with pientifui resources, but in areas with a limited food supply, this overlap might be considerabie. Hansen (1976) reported thet the most important food piant for feral horses in southern New Mexico wās

Russian thistle (シaisaia kai゙i). This testifies to the survivability of the feral horse. His New Mexico study aiso showed the lowest percentage (50%) of grasses and grass-1ike planis that he had observed in horse diets from six states. On the other hand, only tivo studies could be located which reported grasses in excess of five percent of an antelope's diet (Hjersman and Yoakum 1959, Mitchell and Smoitiak 1971). This, too, would indicate a lack of serious diet overiap under conditions of forage plentitude. Daily forage requirements for antelope and horses have been reported as 3.1 and 2.5 percent of total body weight respectively (Stoddard and Smith 1955, Thomas 1974). Average weights were estimated at 410 kg for horses (G. Cropper, pers. comm.) and 45 kg for antelope (Pyshora 1977). Based on these estimates, the daily forage requirements were 10.25 kg for horses and 1.395 kg for antelope.

Little has been reporsed on water reguirements of either antelope or feral horses. Beale and Smith (1970) found that the prongnorn of western Utah did not use free water when the moisture content of abundant forbs excesded 75 percent. However, during the not, ary summier, the daily requirements averaged 2.8 liters per animal. In a similar study in Wyoming, Sundstrom (1963) reported daily water requirements varied from Q. 31 iters per day in May to 4.5 liters per day in August. However, neither study reported on drinking frequency. Water recuirements of a domestic 454 kg horse vary from 15 to 57 liters per day depending on ambient temperature, activity, and reproductive condition (Evans et al. 1977). It was aiso reconmended that horses be watered frenuently during the day. Pellegrini (1971) reported that fersl horses in Mineral County, Nevada watered every other night and remained at the water hole all nignt.

However, the U.S. Forest Service was able to inventory feral horses in eastern Nevada by time-lapse photography of water holes during the day (Baxter 1977). This was an indication that these animais also water during daylight hours. A thorough literature search failed to reveal any information on interactions between antelope and feral horses in either grazing or watering situations.

The primary aim of this paper is to report any competition that exists between antelope and feral horses in the Charies Sheidon Antelope Range. The definition of interspecific competition preferred by this author is that used by Miller (1967:6): "Biological competition is the active demand by members of two or more species at the same trophic level for a common resource or requirement that is actually or potentially limiting." This definition has been expanded to include, in part, that of Krees (1972:211) who stated that ". . . if the resources are not in short supply, competition occurs when the organisms seeking the resource nevertheless harm one or other in the process." Competition which exists for a limited resource is termed exploitațion competition, and an interference component exists when organisms harm one another in seeking a needed resource, regardless of its availability (Krebs 1972).

The exploitation component of competition for food resources can be determined, with reservations, by comparing dietary overlap of sympatric species to the availability of the relevant foodstuffs. Hansen and Ueckert (1970:540) stated, "The contribution of individual plant species to the diets of sympatric nerbivores and the availability of these plants are essential criteria for detemining if dietary competition exists." Cody (1974) stated that the mere anaiysis of stomach contents can give an
extremely biased picture of the ecological overlap between species. This could be true were stomach contents used for analyzing the overlap of diets between two species with different feeding habits or areas. This would mean that each was obtaining food not available to the other and, regardiess of the degree of overlap, competition would not exist. Tinis should not be the case where the two species under consideration were large terrestrial herbivores feeding in the same general area, and where samples used were composited from 15 or more fecai subsamples.

Several methods are availabie for collecting data for determination of an herbivore's diet: direct observation, fistuiation of either esophagus or stomach, stomach removal, and feces collection. When dealing with a free-roaming large herbivore population, fecal analysis may be the most feasible method.

Direct observation would require the ability to observe from extremeiy close ranges, or an estimation of how much of a certain piant was removed by an animal and whicn animai took it, should more than one species be present. Fistulation would require excessive handing of wild animais to the point that the animal would be tame rather than wild. Analysis of stomach contents would be destructive sampling that would reguire the sacrifice of animals. These drawbacks would be eliminated through the use of fecal anaiysis, a method that reguires nothing more than that material the animal no longer needs.

A microscopic technique for identifying plants eaten by herbivores was deveioped by Baumgartner and Mertin (1939). This technique has been refined and used to study food habits of domestic sheep (Croker 1960), cuokkas (Storr lЭб0), ground souirreis, crickets and grasshoppers
(Hansen and Ueckert 1970), bighorn shesp (Todd and Hansen 1973), meadow voles (Neal et al. 1973), deer (Anthony and Smith 1974), free-roaming horses (Hansen i976), free-roaming horses, cattle, elk, sheep and pronghorns (01 sen and Hansen 1977), and snowshoe hares (Holff 1978). Alumerous verification studies of the accuracy of fecal analysis have been performed (Sparks and Malechek 1968, Free et al. 1970, Anthony and Smith 1974, Dearden et. ai. 1975, Vavra et a1. 1978, Havstad and Donart 1978). These studies have reported that the microscopic analysis of feces provides an accurate representation of nerbivore diet. Westoby et al. (1976) reported on three problems identified in their study of the accuracy of quantifying artificially compounded mixtures of vegetative material. These problems were: (1) wrong name appiied to all fragments of one material, (2) attempt and failure to name material which was not relicbly identifiable, (3) miss material aitogether. These problems cannot be eiliminated but their effect could be reduced. Coliecting reference material during the same time period that fecal samples were collected would recuce errors due to phenological stage. Constant referral to photomicrographs and reference slides, would reduce misidentification. Rare plants may be missed during anailysis, but this . Should not negate the results since their contribution to either diet would be negligible.

Schroder and Rosenzweig (1975:10) stated, "The only necessary and sufficient means of demonstrating the existence of competition between two species is to observe the numerical responses of the presumed competitiors to perturbation of one or both soecies." Although jerturbation analysis should show competition, it is felt that the
inclusion of the word onty is excessively restrictive. The interference component could be ascertained, although possibly not quantified, by observation of the interaction between two species for a limited resource, i.e., food or water. Dietary overlap for a limited food item should indicate the expioitation component of competition. Additionally, perturbation analysis would be difificult, if not impossible, for studying competition between large, long-lived mamals existing on public domain.

The Charles Sheldon Antelope Range (Fig. 1) was established in 1039 for the purpose of preserving, studying and managing prongnorn anteiope and other wildifie species (U.S. Dept. of the Interior 1969). This range contains over one-half million acres and supports a stabie pronghorn population of approximately 800 animals (B. Wiseman, pers. comm.).

The study area was located in the northwestern portion of the Sheidon Antelope Range, approximately 270 km north of Reno, Nevada. There were an estimated 100 antelope and 115 horses in this area during i977. The 1976 populations were estimated at 85 antelope and 195 horses. The study arse consisted of approximately 40 square kilometers of North Rock Springs Table, known as Horse heaven (Fig. 1). it was rolling country broken by an occasional valley. Elevations ranged from 1,890 m in the nortinwest to $2,010 \mathrm{~m}$ at the summit of a north-soutn ridge whicn bisected the area.

Average temperatures during the summer months of 1977 and 1978 (Tabie i) were characterized by high daytinle and low nignttime readings. Table i. Average temperatures (C) in the study area.

	1977		1978	
	Hign	Low	Hign	Low
June	25.1	4.0	21.6	-0.3
July	27.2	3.4	27.4	2.9
August	26.7	3.4	25.8	2.3

[^0]

Fig. 1. Location of study area.
ten years has been 19.5 cm , varying from 14.3 to 30.9 cm per year. Total precipitation was 15.9 cm during 1977 and 27.6 cm for 1978.

The study area was located within the sagebrush and bunchgrass major plant community of North America (Kuchler 1964). Yoakum (1972) estimated that 27 percent of North America's pronghorn antelope occupy this vegetative type. The dominant vegetation consisted of low sagebrush (Ansemisic arouscuia) and Sandberg bluegrass (?oc sancoiergii). Numerous patches of big sagebrush occurred throughout the study area. Forbs were plentiful but tended to be patchy in distribution and some species failed to set seed during the summer of 1977.

The soil of the study area was of the order Aridisols, suborder argids. The parent material was predominantiy basait residuur with some admixture of tuffaceous alluvium (Soil Conservazion Service 1970). Scattared throughout Horse Heaven were smail areas of moliisols. Recent deposits of rhyolite or basalt were laid over oid lake sediments. The surface was rock covered and water runoff was radid.

Tine water situation in the study area, was adeauate to provide for the neecs of the resident wildifife population. All water was coliected from runoff in either natural or man-improved caciments. Fig. 1 portrays the relative location of the four watering places that existed during a good water year. Hater hole number 1 was the preferred water hole and received heavy use by both feral horses and antelope until it dried up (Juily 5, 1977 and August 1, 1978). This was a naturà cachment and was the most distant from roads and human activity. Water nole number 2 consisted of one man-improved and two natural caciments. These water noies received ititie antelope and no horse activity until water nole
number 1 dried up and the horses moved to the west in late summer. These water holes dried up in mid-Juiy, 1977, and contained water all summer, 1978. Water hole number 3 was a man-improved cachment and received little activity before number 2 dried up, but the bulk of horse and antelope activity, after this. This water hole held sufficient water to meet the needs throughout both sumers. Water hole number 4 was a small natural eachment that contained no water in 1977 but had water until midJuly 1978. Some antelope used this water, but no evidence of horse use could be found.

Other ungulates that used this area were muie deer (Ococoiveus nemionus) and domestic cattle (Bos taums). Deer used the area frequently for water and less so for browsing along the bluff edges. Suitable deer habitat, but with less water, existed to the east and south of the study area. Livestock grazing was not permitted during 1977, but approximately 250 cattie were in the study area during portions of the summer of 1973.

Based on available information on location of feral horse and anteiope usage, six agronomy cages were positioned on May 29 and 30 , 1977. Four cages were located on Round Mountain and two in Horse Heaven. These cages, each 2.5 by 4 m , were used in an attempt to predict forage production within the study area. At the end of the growing season for each forage type, ground cover was determined for each plant which was totally within the exclosure and current year's growth was removed. Plant diameter was determined by measuring the longest and shortest diameter of the plant and averaging these values. Crown diameter was determined for shrub and forb species and basal diameter for grasses. Vegetative cifppings were placed in paper bags and allowed to air dry for a minimum of two months prior to weighing. Current year's growth was weigned to the nearest one-tenth gram. Covariance and regression anaiysis were used to determine whether plant diameters couid be used to predict production. This type of analysis was deemed appropriate because the parameter measured was affected little.by grazing activity.

Vegetative data for the study area was obtained from 50 systematicalty located 0.5 by 20 m strip transects during July 1977. Transects were located without regard to vegetative type. The only areas exciuded from sampling were biuff faces. In the two cases where this affected sampling, the piot was dispiaced to the nearest iocation that eliminated the obstacie. All piants whose measured component fell totally or partially within a transect were included in the survey. Crown diameter and the estimated percentage of the crown within the piot were recorded for all snrubs and forbs by species. Basal diameter and the percentage within
the plot were recorded for all grass species. A coniouter program, SHELM1, was written and used to obtain percent cover and density for all species of vegetation within each study plot.

Fecal samples for diet comparison were collected during the latter phases of vegetative sampling. These samples were collected in the vicinity of the only water hole within the study area that still contained water. Anteiope feces were coliected from animals observed defecating, to preciude the possibility of including feces from mule deer that frequented the area. Subsamples weigning about 4 g each were coliected from separate fecal groups until 20 subsamples were ootained for each species. The subsamples were then combined by species to form the sample for analysis. Anthony and Smith (1974) reported that subsamples from 15 pellet groups were adequate to describe deer diets in Arizona. Samples were placed in airtight plastic bags and kept frozen until final sreparation for analysis.

Specimens of all known plant species in the study area were colleczed for identification and preparation of reference slides. Plants were identified by the use of Munz (1968) and Hitchcock et al. (1955-69) and verified, where possible, by comparison with known specimens in the Nevada Agricultural Experiment Station Herbarium. Detailed instructions for reference slide oreparation are outlined in Appendix A. These reference slides were studied in detail for approximately two weeks and black-and-white photomicrographs were made of diagnostic characterisचics. This detailed study was followed by the preparation of a dichotomous key based on characteristics of the leaf porzion of the diants (Appendix 3). The leaves of grasses were found by Davies (1959) to have the greatest
diagnostic value, due to leaf ceil structure not being greatiy affected by phenological stage of the plant. The lack of a key for all plant parts did require additional efiort when analyzing feces, but the time spent was less than that required for the preparation of additional keys.

The next step in the learning process was the quantification of unknown mixtures of plants from the study area. A fellow graduate student prepared these mixtures in quantity. Continued work with test mixtures increased the writer's knowledge of the plants involved until test mixtures were repeatedly analyzed within five percent accuracy. This accuracy is considered sufficient by the Colorado State University Composition Analysis Laboratory (R. M. Hansen, pers. comm.).

Microscope slides of fecal material were prepared as outlined in Appendix A. Fecal analysis was performed by noting species occurrence in 20 systematically located fields on each of five slides for a total of 100 fields. One hundred fields have been reported as adeauate to describe an herbivore's diet (Martin 1955, Sparks and Malechek 1968, Free et al. 1970, Todd and Hansen 1973). The contribution of each plant species to an herbivore's diet was determined using the frequency conversion technique developed by Sparks and Malechek (1968). In this technique, the presence of a species in a microscope field is noted, but the number of such fragments is disregarded. This frequency is then converted to relative density using the tables developed by Fracker and Brischie (1944). Sparks and Malechek (1958) reported no loss in accuracy using this method, as compared with counting all fragments of all species appearing in each ifield.

Correction factors for any over- or under-estimation of species
contained in hand-compounded mixtures have been developed (Dearden et al. (1975). Such correction factors were not applied in this study because Hansen (R. M. Hansen, pers. corm.) stated that the increased work load does not justify the slight increase in accuracy.

Data concerning antelope-horse interaction at water holes was collected by observation through a 15X-45X spotzing scope. Each observation of antelope watering was recorded by time of day, number of antelope, drinking time, loafing time, number of horses and their distance from the water. Anteiope were identified as male, female, or kid. Drinking time was determined by timing, with a 0.1 -second stop watch, the amount of time that an antelope remained in a drinking posture at the water. Drinking posture was defined as head over the water and body perpendicular to the water's edge. Small periods of surveillance by the animal were not deducted from drinking time. Loafing time consisted of all time the antelope remained in the vicinity of the water, less drinking time, prior to obvious departure behavior. When actually departing the vicinity of the water hoie, an antelope usually acted as though it had a destination in mind, that is, it moved off without hesitation or loitering. This procedure was modified for a period during the summer of 1978 to include cattle when they were present in the study area. This data was anaiyzed using analysis of covariance and regression to determine if horse proximity had an effect on antelope use of water.

A second method of data collection on water hole interactions was attempted. This method entailed the use of a Minoita movie camera with time-iapse capability, similar to that used by the U.S. Forest Service in

Eastern Nevada (Baxter 1977). This camera was implaced in the vicinity of the water hole and adjusted to expose one frame per minute. The desire was to photograph all animals watering during daylight so that a customer list could be developed. Also, any interactions would be recorded on film as verification for visual observation. This method did work as expected for horses and in many cases, allowed for band identification. Due however to the small size and coloration of antelope and the physical layout of the water holes, the systen photographed far too few antelope (many less than visually observed) to be of any value. Since this method of data collection was considered a failure, it will not be further discussed in this paper.

During the early phases of this study, ail observations of horseantelope interactions during grazing or movement were recorded as to number of antelope, number of horses and a description of the interaction. After 30 such ooservations, with the resuits never varying, it was decided to define a normal behavior pattern and record only those incidents that appeared unusual. The normal was considered to be that the antelope would give way to horses, usually keeping a distance of approximately ten m between the two species. One exception to this was in the case of a stud fight, when all animals, horse and antelope alike, scattered. This portion of the study will be discussed qualitatively rather than quantitatively later in this paper.

Standard statiszical procedures were used to analyze all data (Snedecor and Cochran 1976). Statistical significance was accepted at the 25 sercent level of assurance uniess otherwise noted.

The agronomy cages failed to produce the desired results. They had been positioned, by necessity, prior to summer dispersion of feral horses. The horses were concentrated in one large herd on the flat area between Round Mountain and Horse Heaven. Antelope were scattered throughout the study area. When the horses did disperse, they all moved east to Horse Heaven and remained there during the summer. As a result of this movement, this study was concentrated on Horse lleaven and consequently, only two agronomy cages were in the actual study area. Despite this, all six cages were treated as projected and material clipped and weighed.

Fifteen piant species were identified within the agronomy cages while a total of 54 species of vegetation were found within the study area as a whote (Table 2). Only five species were found in numbers sufficient for further analysis. An analysis of covariance performed on availabie data showed that a significant difference existed in the diameter to production relationship between cages for iow sagebrush and Thurjer's neediegrass (Stion inurjemiana). Sandberg oluegrass, sauirreltail (Situnion hystriz), and sand wort (Anenaria spe.) were essentially uniform throughout, but were of little value because they played an insignificant role in diet overlap, as determined by fecal analysis. The agronomy cages failed to revea? the true species diversity of the study area due to inadequate samping. This fact points out the necessity that production sampling methods closeiv parallel or be an integral part of other vegetative samipling procedures. Vegetative sampling by transect was designed to be used with the data coilected from the agronomy cages to predicr forage production.

Table 2. Vegetational characteristics of the study area.

Common Hame					ity
(Sinientifio: Name)	${ }^{\text {a }}$ req.	Percent	${ }^{\text {C.C.I. }}$	Plant/m ${ }^{2}$	C.I.
Stiruls					
I.ow sagebrush					
(Aig samebrus arhatula)	98	21.2	12.13	3.28	
$\begin{array}{ll}\text { Big sagebrush } & 21.2 \\ & 12.13\end{array}$					
Twistleaf rabbillirush					
Bi Lerbrush	64	2.9	11.07	0.69	10.263
(l'urshiat tridentata)	10	1.6	12.34	0.01	10.015
Snowlerry 0.0 .010 .010 .015					
(Simplumicapon purishii)	4	0.1	10.25	0.002	10.004
	8	0.1	10.15	0.01	10.015
lotals		29.5	14.11	4.06	10.465
Forlis					
Hestern yarrow					
(Achillea mithefolium)	d				
Momitain dandelion					
(Atsacris sup.) Wild onion	2	e	--	0.01	10.024
(Allium : 1 ए.)	d				
Pussytoes					
(Ante:Htaria :!p.	d				

Table 3. Continued.

Conmon Hame (:i:ientific: Nume)	${ }^{\text {a }}$ Freg.	${ }^{\prime}$ Cover		Density	
		Percent	${ }^{\text {C. }} \mathrm{I}$.	Plant/m ${ }^{2}$	C. 1.
Ruck cress					
(Analis app.)	50	e	--	0.10	10.047
Sand wort -					
(Avenuria aply)	60	0.1	10.15	1.81	10.735
(flater asepulorum)	12	0.2	10.12	0.76	10.415
Hoolypod locoveed	22	e	--	0.14	10.157
locoweed					
(A. Blp.)	24	0.1	± 0.07	0.18	10.119
Balsamrool			10.07	0.1	-1.19
	70	0.8	10.31	0.82	10.330
Paint brush (cialilleja app.)	-6	e	--	0.01	10.007
Goosefoot e ere					
	d				
Tansey liustard (1):sisumainia pimmen)	d				
Mustin's daisy					
(tarigearon anislimu)	(j)	e	--	0.12	10.040
Fleabane					
(k (B. Hoomeri)	66	0.1	17.06	0.89	10.149
Wild buckwheat 0.1 ere					
(Exriatw	60	0.3	10.13	0.27	10. 106
Hild buckwheat. (t. micarothertim)	22	0.2	10.12	0.10	
Wild buckwheat					
(k: : 1×1.)	8	0.1	10.20	0.02	10.021

Table 3. Continued

Conmon Hame (sisienlifio: Namb)	"Freg.	${ }^{\text {b Cover }}$		Density	
		Percent	${ }^{\text {c C.I. }}$	Plant/mi ${ }^{\text {? }}$	C.I.
fireen gentian					
(Findera sulu)	6	e	--	0.02	10.028
Stemless goldenweed (Hay)lopaprus acaulia)		-	11	0.02	10.028
(Haplopapras acaulia) Iris	21	0.2	10.11	0.16	10.098
(lwis misummriensis)	d				
Peppergrass					
(lupiditum perfolialum)	d				
Prickley gilia					
	11	0.2	10.19	0.11	10.112
Lupine				0.1	10.172
(Lıpimas tup.)	20	0.6	10.52	0.50	10.483
E.vening primrose (Gemolheary tamuetifolia)	d			0.50	-0.183
Ilounds-ton!ue					
Beard-tongue					
(IP. 'ill)	6	e	--	0.19	10.268
Phlox ery					
(1)htor hoodia) Cimquefoil	1.1	0.6	10.25	1.04	10.535
(botentilla: :リ.)	d				
Dock					
(linmese s\%\%.)	d				
Dandelion					
Clover	d				
(1 'rificlium materatepholum)	2	e	--	0.06	10.129

Table 3. Continued.

Connuon Name (:seicntifio Namb)	${ }^{\text {a }}$ Freq.	${ }^{\text {B Cover }}$		Density		
		Percent	${ }^{\text {c C. }} \mathrm{I}$.	Plant/m²	C. I.	
Death camus						
	d					
${ }^{\prime}$ Unknuivn forbs	4	e	--	0.01	10.017	
Totals		3.8	10.65	7.23	11.794	
firass and lirass-Like						
Bluehunch wheatgrass						
Cheatyrass						
Sedge						
Great Basin wildrye						
(E'lymus $^{\prime}$ einerena)	d					
Idaho fescue						
Headow barley						
(Hordeumi brathyanthertim)	d					
Foxtail barley						
(11. jubatum)	24	0.1	10.08	0.38	10.341	
Niregrass						
dumegrass						
itioulerin (:rishata)	2	e	--	0.02	--	
Hat mulily						
(Atuhtumbergit riahumbiomia)	d					

Table: 3. Continued

Common Hame (is:itmlific: Name)	"Freq.	${ }^{1}$ Cover		Density	
		Percen	${ }^{\text {C.I. }}$	Plant/m?	$\overline{\mathrm{C}} . \mathrm{T} .$
Sandberg bluegrass					
(l'oa samiluergia)	98	1.7	10.33	6.20	10.957
Squirreltail	9	1.7	10.33	6.20	10.957
(sitanion hystria)	90	0.3	10.09	1.39	10.374
Thubers needlegrass		0.3	10.09	1.3	10.37
(istipa Lhurberiana)	28	0.2	10.13	0.22	
'Unknown grass	58	0.2	10.08	1.01	10.491
Totals		2.5	10.38	9.29	11.237
Girand lotals		35.8	14.32	20.58	12.310

aplot size: $10 \mathrm{~m}^{2}(0.5 \times 20 \mathrm{~m})$.
${ }^{\text {l'Crown cover for shrubs and forlis, basal cover for grasses. }}$
CConfidence Interval ($P<.05$).
"species was not recorded in sample plot.
"Cover less than 0.05 percent.
'Illuknown plants either grazed too low or were too weathered for identification.

The sampling process was laborious and time-consuming and, with the failure of the cages to produce usable results, did not produce the desired estimates of forage production. It did, however, allow for the estimation of percent cover and density (Table 2).

The total vegetative cover (basal for grass plus crown for sinrubs and forbs) was estimated to be $35.8=4.32$ percent with the bulk of this coming from iow sagebrush at $21.2=2.43$ percent. Other shrubs contributed lesser amounts for a total shrud crown cover of $22.5=4.11$ percent and a density of $4.06=0.465$ plants per square meter. Total forb crown cover was $3.8=0.65$ percent with no species contributing in excess of one percent. The forb density was much higher than shrubs at $7.23=1.794$ plants per square meter with sand wort and phlox īniow noociii) being the two major contributors. Grasses provided less ground cover $(2.5=0.33 \%)$ than the otner plant groups but grass censity was greatest with a $9.29=1.237$ plants per square meter. By far the most Common piant in the study area was Sandberg bluegrass with over six piancs per square meter. This was the oniv piant, other than sagebrush and rabbitbrush, that contributed ground cover in excess of one percent. This grass, however, receives little if any, summer use due to its early maturation. As can be seen from the species list (Tabie 2), the study area produced a hignly diverse and relatively dense ($20.58=2.310$ plants per square meter) vegetative community.

The patchy nature of the vegetation is evident when examining the frequency of plant appearance. Three species were recorded in only one plot, while only nine species appeared in over one-half of the plots. The number of individual plants adpearing in the 10 square meter piots
varied from 100 to 458．Those plots with few plants were generally in the more fertile areas with larger plants，while the high density plots were usually those with poor soil and an abundance of small desert adapted plants such as bluegrass，sand wort，and phlox．

There were plant specimens collected in the study area that did not appear in a plot and would，therefore，be considered rare．Some of these rare plants were used by horses or antelope，as subseçuent fecal analysis indicated．This fact illustrated the difficulty of obtaining complete information while working with populations of free－roaming animals covering a relatively large area．It was evident that pockets of certain types of vegetation were missed during the sampiing process．The study area was selected based on use during daylight hours；therefore，it is quite possible that the study animals grazed outside the designated study area during the hours of darkness．It is felt that this does not invalidate the study because none of these rare piants contributed significantly（over 5% ）to either herbivors＇s diet．

Fecal analysis indicated a wide range of piant species taken by both feral horses and pronghorn antelope（Table 3）．Each herbivore species，however，appeared to have certain plant species that it preferred． In the case of the pronghorn，the combination of western yarrow（Aninizize miここご○ごium），Austin＇s daisy（Emigeror ais＝inae），and cinquefoil ミここenごここの spz．）made up $17.3=9.27$ percent of diet，while only a trace （less than 0.05% cover）of these species were found in the vegetative sampling．This indicated that these plants were highly preferred during July，1977．Sluebunch wheatgrass Agrozuron spiazzum）and Thurber＇s needlegrass made up $37.8=10.32$ percent of the feral horse diet，while

Table 3．Botanical composition of feral horse and prongiorn antelope diets in nortinwestern Nevada，July， 1977.

Spesies	Diet Composition
	$\frac{\text {（Percent }=\text { Confidence Intervai）}}{\text { Antelode Horse }}$

Shrubs

```
Arvemisia spo.
```

Cnrusocinamrus visciditi-toms

Eursinia vricentava
Symenoricamos parisinii Totals

$13.0=6.01$	0
$14.0=3.71$	$1.3=1.18$
$11.0=3.71$	$0.2=0.61$
$0.8=1.53$	0
$43.7=5.23$	$1.5=1.26$

Forbs

Acini゙こea miちこefoこium	$3.7=2.10$	0
Arenaric spp．	$0.5=0.92$	$3.1=2.28$
Asver scoputomm	0 －－－	$1.6=2.36$
Astragaluis spe．	$3.6=1.43$	0 －－－
Baiscmoriniza spo．	$0.3=0.72$	$0.6=1.14$
Casごごですく spp．	0 －－－	$0.2=0.6 T$
Chenopociun miomum	$1.7=1.54$	0 －－－
Erigeron austinae	$7.7=3.59$	$1.5=1.41$
三．Eloomeri	$2.2=0.90$	0 －－－
Emiogonum spo．	$12.2=4.38$	0 －－－
Iris missoumiensis	$0.3=0.72$	0 －－－
こer－ociaction zungens	$2.7=3.87$	$1.2=1.77$
こuptrus spp．	0 －－－	$5.7=3.42$
Jenotrera＝mucceたi゙ozia	$1.1=1.44$	0 －－－
Eersuemon spo．	$4.9=2.46$	$0.9=1.04$
こhicm inoocio	$5.0=3.88$	$7.5=3.20$
	$5.9=3.48$	$0.4=0.65$
	$0.3=0.78$	0 －－－
Unknown fori	1．6 $=0.32$	$0.3=0.67$
Totals	$53.5=6.15$	$23.0=4.37$

Grass and Grass－Like

Asrosuron spicztum	0	$7.8=2.21$
Eromus veceorum	$1.3=1.10$	0 －
ziemis cinereus	0	$0.2=0.35$
	0	$1.6=1.70$
\＃．－¢－	0	$12.8=5.25$
ごeえeric emisuasa	0	$7.2=1.55$
Muineniergia micinussonie	0	$0.5=1.38$
Eva sanmberEii	0 －－－	$0.9=1.23$
ジこunior husurim	$0.3=0.73$	$13.3=1.59$
Stiza－inunbericna	$0.9=1.60$	$30.0=8.11$
	$0.3=0.72$	0 －
－innus sex．	0 －－－	$0.8=1.05$
Unknown grass	0 －－－	$0.4=0.58$
Totals	$2.5=2.63$	$75.5=4.42$

grazing on rabbitbrush but horses were never observed using this shrub. The other two species under discussion here, Austin's daisy and prickley gilia (Leミニocanciion zungens), are both low growing plants making direct observation of grazing virtually impossibie. The fact that antalope and horses used Austin's daisy, when it was rare, indicated that it was an actively sought after plant by both species. This was an indication of potential competition, but should not be weighed too heavily since the slight use by horses is not exceptionaliy precise. Prickley gilia was more common and did not contribute significantiy to either species' diet and should therefore not be considered as a source of serious competition.

The two diets were compared by two statistical methods, Spearman's rank correiation coefficient $\left(r_{5}\right)$ (Snedecor and Cochran 1976) and Kulcyzenski's similarity index (SI) (Oosting 1956). The results of neither of these methods should be taken as absolute values. Rather, these values are indicators of diet similarity or dissimilarity and as such should be mutually supportive in nature.

Spearman's r_{s} is computed using the formula:

$$
r_{S}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}
$$

where d is the difference in ranks between the paired observations and n is the number of paired observations. The rank correlation can range from $-i=0-1$, complete concordance to complete discordance. This is the most widely used measure of diet overiad. Its use in this case may therefore enable this experiment to be compared with like stucies and iend support to later findings.

$$
\text { The result of the computation in this study is } r_{s}=-0.327 \text {. This }
$$

indicates some degree of discordance. The diets are statisticaily
the total cover of the two species was oniy $0.3=0.21$ percent. This again indicated highiy preferred forage species. Juring vegetative sampling, it was difficult to find needlegrass that had not been grazed except where protected by other vegetation. This latter observation indicated to this author that horses may be reluctant to force their way into sagebrush plants to obtain grass when other forage is more readily available.

There were 23 different plant species identified in antelope feces and 22 species in horse feces. A comparison of plant growth forms utilized by the two herbivores displayed the divergent preferences. Shrubs contributed $43.7=5.23$ percent to the antelope diet while only $1.5=1.23$ percent to that of the horse. Grasses were just the onposite, with the horse diet being $75.6=4.42$ percent grass, while the antelode used only $2.5=2.63$ percent grass. Forbs contributed significantly to both diets, comprising $53.5=6.15$ percent of antelope and $23.0=4.37$ percent of horse diets.

Fecal analysis revealed that 12 plant species were taken to some degree by both horses and antelope (Table 3). It must be noted, however, that of these 12, oniy phiox contributed significantiy (5% or more) to both herbivore diets. This plant was the second most abundant forb available (1.04 $=0.535$ plants per square meter) within the study area and was in full bloom during the period that the fecal samples were collected. Three other plant species contributed over one percent to the diet of both herbivore species. Rabbitbrush use by antelope ($14.0=3.71 \%$) was an expected result, but the horse use ($1.3=1.18 \%$) of this shrub was not confirmed by visual odservation. Antelode were frecuently observed
different ($P<.10$) which is consistent with the relatively small diet overiap discussed above and quantified below.

Kulcyzenski's similarity index (SI) was used to compute the amount of overlap that existed between the diets of horses and antelope. It is computed using the formula:

$$
S I=\frac{\sum 2: W}{\sum(a+b)} \times 100
$$

where W is the lesser percentage of a food species in the diets being compared and $a+b$ is the sum of the percentages of that species in both diets. The results of this analysis showed that there was a 12.78 percent overias between feral horses and pronghorn antelope in the study area during July 1977. The subject species shared that persentage of the total forage selected. This index is, of course, valid only for the location and conditions thet existed at the time the sample was taken.

An extension of Kulcyzenski's index which may be used as a management tooi is that developed by Sazama (1975), which estimates forage made available to a herbivore by removal of another heroivore from the range. This procedure uses the formula:

$$
D U_{A}=\frac{D M I_{R} \times S I}{D M I_{A}}
$$

where $D U_{A}$ is the increased days-use of forage made available to herbivore species $A_{\text {, }}$ DMI I_{R} is the daily dry matter intake rate of heroivore species R removed from the range, $D M I_{A}$ is the daity dry matter intake rate of herbivore A, and SI is Kuicyzenski's similarity index. Average weignts were estimated at 410 kg for horses anc 45 kg for antelope. Computations based on the above assumptions indicate that the removal of one horse would make additional forage availabie sufficient for 0.939 or
approximateiy one antelope.
This information would be valid only for the location and conditions that existed during the summer of 9977 . Because this conversion number is site specific, it would be of considerable value to resource menagers to have like conversions available to them for various sites and conditions under their control. A more common practice is to transform antelope numbers into Animal Unit Months and apply this calculation to vast areas under all conditions (Hjersman and Yoakum 1959́). This latter practice could prove detrimental to both-the wildife concerned and to their habitat. Based solely on weight, one horse consumes approximateiy the same amount of dry forage as seven antelope. However, when considering dietary overlap, the replacement ratio is approximately one to one. Replacement stocking levels established on a weight basis could piace excessive pressure on the overlap vegetation and cause its elimination from the habitat. This loss would require the affected herbivores to switch diet or to migrate to new feeding areas.

The factors controlling the population sizes of the zotenziai゙iu competing species and the role of the food items used in common must be known in order to assess the significance of dietary overiad. If both podulations were limited by factors other than food resources, e.g., predation or sociai benavior, dietary overlap may be of no consequence and should not be considered as competition. The additional food made available to one species by a reduction in numbers of the other species concerned would not be utilized. There would be no numerical response by one species to removal of the other. An exception must be made for food items thet ars activeiy sought after and taken whenever found. Such food
items are always in danger of local extinction due to their desirability. Management of the area should not be based on the preservation of highiy desirable species, unless the inclusion of this item in the diet was essential to at least one of the species concerned. In this study, Austin's daisy might be considered a highiy desirable species. It was a rare plant (Tabie 2) and was found in both antelope ($7.7=3.7 \%$) and horse ($1.5=1.4 \%$) diets. Further research on the roie of Austin's daisy is required before the competition for this plant can be assessed.

The feral horse population at the Sineldon Antelope Range is controlled by trapping and removal. The factors limiting the antelope population are not known at this time. If it were assumed that this population is limited by food resources, the overlap vegetation takes on a much different role. Under this assumption, a reduction in horse numbers would make more forage available to anteiope and the antelope population should incrase by a number equal to the number of horses removed. The manager should be aware of this one to one replacement rather than to expect each horse to be replaced by seven entelope, as would be expected considering only forage requirements based on animal weight.

The resource manager must consider wildlife food requirements when determining stocking levels of exotic animals, e.g., seasonāl livestock grazing. The diet overiap and the role of the overlap vegetation snould be known. He must also know the population limiting factors of the widilfe concerned. Where the wildilfe popuiation is limited by food resources, the manager must determine the roie of the overiap vegetation. If a piant within the overiad is a limiting faczor, the manager must not
permit the stocking of additionai herbivores or he may be faced with a reduction in the resident population. Where overlap food items are not limiting factors, the manager may act as discussed below. Where the wildlife population is limited by factors other than food, the manager must consider the role of any overlap vegetation. In the event that overlap vegetation is essential to wildlife, the manager must stock exotics at the rate based on the demonstrated diet overlap and the availability of the piant species. Should the overlap vegetation be plentiful, or highly preferred plants, the manager should be abie to stock at a rate based on daily dry forage requirements of the exotic species without affecting wildife populations.

It must be noted that stocking leveis based on dietary overlap could result in under-utilization of those plants used exclusively by one herbivore. This could, in turn, allow these unused plants to out-compete and displace those plants used by the resident hervivore. This reduction of preferred plants would iead to the deterioration of the nabitat in terms of the resident population.

The results of the investigation into water hole interactions between horses and antelope indicate a lack of competition for water. forthy of note, but not statistically valid, was the observation that antelope continue to utilize a water nole three to four days after horses have deserted $i 亡$ due to poor water quality. Nater hole number 2 (Fig. 2) aried up both summers while experiencing extensive use by botn species. On soth occasions, the horses transierred their attention to water hole number 3 ((ig. 2) when the water in hoie number 2 reached some unacceptadie levei. Anteloge continued to use wetar hole number 2 even though the sediment
load was such that cracks would be evident on the surface when the weter was not roiled. Tinis would indicate that antelope are adapted to ufilize a poorer quality of water than horses. Because of this, it would apdear that the antelope could out-compete horses during a drougnt year. This shouid not be taken as conclusive, since a badly lamed horse was observed to survive for four days by ingesting mud for water. This was a strayed domestic horse which was subsequently picked up by its owner and recovered fully. Tinis indicated that horses will use poor quality water if necessary, but do not if better water is available.

During the summer of 1978 , a total of 142 measurable observations were made of antelope watering. The observations were partitioned into four cazegories:
I. Horses within 800 m of the water $(\mathrm{H}=5 \mathrm{i})$.
II. Horses (or cattle) over 800 m from, but in sight of, the water ($M=27$).
II. Horses (or cattle) out of sight of the water ($N=43$).
IV. Cattle within 800 m of the water. (ii $=21$).

Additionally, there were 35 usable observations of antelope watering made during the procedures test in the summer of 1977. These observations all Fell into Category I.

An anaiysis of covariance was performed to determine if the 1977 osservations could be combined with the 1973 data. This iest compared the number of antelope and watering times of each set of deta. The results of this analysis indicated that these relationships were significantly different for the two years, with antelope crinking ionger during a dry year (1977) than during a wet year (1978). This difierence
cannot be explained by temperatures because the average highs were comparable during both periods (Table 1). Wind data were not available, but higher wind velocities in 1977 could have caused increased water loss due to evaporation which would, in turn, require increased intake. The 1977 data will not be further discussed in this paper.

An analysis of variance was used to ascertain if any differences existed in the sizes of the watering antelope herds between the four categories. The results of this analysis failed to reveal any significant difference between the four categories. Since all antelope herds were considered to be from one population, comparative statistical analysis could be performed.

Analysis of covariance comparing drinking times, adjusted for antelope numbers, between the four categories indicated no significant difference existed. Like tests conducted by adjusting drinking times with previous night's low temperature, current day's high temperature, and horse numbers and distance from water produced the same results. It is evident from this that antelope are not particularly concerned with the presence of other herbivores when they are drinking. Antelope and horses were observed on numerous occasions drinking together within an estimated five m of one another. Antelope also drank concurrently with eattle, although not as frequently as with horses. When drinking with horses, anteiope tend to dash from the water when horses paw the water or cross the water hole directly toward them. This same reaction was observed when only antelope were watering and a dominant male splashed water. * Therefore, it is believed to be a reaction to the unexpected rather than actual fear of a horse. Antelode appeared to have favored
watering places at the water hoie and would wait if horses occupied the places rather than water eisewhere. Antelope would generally move directly to their seemingly preferred places when horses occupied other parts of the water hole edge. In the case of water hole number 2 (fig. 2), preferred entries were at the east and west ends. Little antelope watering took place elsewhere. These areas were the flattest approach to the water hole and afforded good visibility of the water hole from a distance. When watering at water hole number 3 (Fig. 2), the preferred places were at the extreme eastern end for small groups or singles. Tinis area was the flattest approach to the water with good visibility. Large herds would water at the west end where a man-made cachment had resulted in a relatively high earthen dam and reduced visibility. This incicated that antelope prefer watering places with the best possibie visibility but will forego this preference when in large herds. This indication was supported by a comparison of the natural versus tine man-improved portion of water hole number 2 (fig. 2). Analysis of covariance indicated that antelope spent more time $(P<. i 0)$ drinking at a natural as opposed to a man-improved water hole. This is probabiy due to two factors: reduced visibility caused by the dam; and the extreme posterior-nigh position required for reaching water in a bulidozer-dug cachment. Resource managers shouid be aware of this preference and construct caciments as naturaliy as possible.

Testing for loafing time difierences was performed through analysis of covariance, adjusting for the same factors as were used for drinking times. This analysis indicated that a significant difierence existed between the loafing times of antelope among the four categories. The

Duncun's Multiple Range test showed that antelope spent a significantly longer time loafing when horses were in sight of, but over 800 m from, the water hole. Multiple Regression performed on this treatment yielded an r^{2} value of less than 0.01 , indicating a total lack of correlation between the numbers of antelope in a herd and the loafing time. Further examinetion of the data revealed that it was marked by severe extremes, ranging from a doe herd of 11 animals loafing for 0.6 minutes to a 3 -buck herd that bedded for 88.5 minutes. When these observations and two other extremes, 2-buck herds that loafed for 59.3 and 39.1 minutes each, were removed, the analysis of covariance indicated that there was no significant difference between the categories. This, like the analysis of drinking times, indicated that the antelope in the study area were unaffected in their loafing habits by the presence or absence of other iarge nerbivores.

The obsarvation of horse-anteiope interactions under feeding or movement situations produced similar, thougin not auantifiable, results as did that of water hole interactions. In over 1,000 hours of observation, not one single act of aggression was noted between the two study species. Antelope normally gave way to moving horses, but did so with little disruption of their activities. The usual avoidance maneuver was that of waiking perpendicular to the direction the horse was moving for io to 15 m and then resuming the former activity. This is probabiy just respect for a larger animai rather than a response triggered by former $i 11$ treatment. Exceptions to this rule usualiy resulted when the antelode appeared to be startled by the sudden appearance of the horse. Antelope would then run for a greater distance than when they walked. This latter
behavior was ailso noted to occur on the sudden appearance of coyote (Cunis iatrans), raven (Comys coman) and sage grouse (Centrocercus uncohasientus), all of which are common in the stucy area. This is even a departure from the usual, in the case of coyotes, since the normal antelope reaction is one of curiosity followed by aggressive behavior.

One observation of a horse touching an antelope was observed. A territorial male antelope was standing in a horse trail observing a coyote at a distance when he was approached, from the rear, by a small band of horses. The lead mare of the band stopped at a distance of less than a meter. After a pause of a few seconds, and when the antelope did not move, the mare placed her nose between his back legs and $1 i$ fited that part of him off the trail. The reaction of the antelope was swift and decisive--he rapidly departed the area. But after running approximateiy 100 m , he stopped and resumed his inspection of the coyote. This action was not considered agressive in nature, because the horse gave the antelope ampie time to move prior to taking any action.

Observations were made which could indicate that some degres of symbiosis may exist between feral horses and pronghorn antelope. On numerous occasions, antelope, startled by human activity, were observed running toward bands of horses. In some cases, the initial stimuius was' strong enough to cause the antelope to continue to run beyond the horses. In these cases, the antelope herd would run in one of two patterns, either on a relatively straignt course or in an exaggerated zigzag fashion. It was noted that when the antelope ran straight past the horses, the only reaction of the horses would be one of curiosity. However, on all four occasions that the antelope ran the zigzag pattern, the horses would
also run off in the same direction preceding the antelope. Thres of these occasions were human evoked while the fourth was instigated by several coyotes feeding an a harse carcass.

On three separate occasions, it was observed that herds of antelope, upon approaching a water nole, ceased movement and waited some distance from the water with all members looking intently into the water hole. On two of these occasions, the antelope waited until horses entered the water hole and then procesded to the water hole and drank simultaneously with the horses. In the third case, the antelope watered only aiter a raven flew onto the edge of the water hole. This may indicate that, when unsure of conditions, an antelope will use other organisms as a guide. These actions indicated that a symbiotic reiationship may exist between antelope and other species, including feral horses.

This study indicated that there was little competition existing between prongnorn anteiope and feral horses in Horse Heaven during the summers of 1977 and 1978. The two species water and forage together freely, with antelope giving ground oniy when directly approached by horses. No aggressive action was observed by either species toward the other species.

The only area where a minor degree of competition may exist is in diet. The results of Kulcyzenski's and Sazama's formulas applied to the fecal analysis data indicated that horses and anteiope share approximately 12 percent of their diets and, therefore, antelope and horse may exist in the area on a $1: 1$ replacement ratio.

Additional work is needed on a more comprenensive dietary overlap study at Sineicion Antelope Range and other areas to determine if more severe competition may exist at other times of the year.

Anthony, R. G. and N. S. Smith. 1974. Comparison of rumen and fecal analysis to describe deer diets. J. Aildl. Manage. 38:535-540.

Baumgartner, L. L. and A. C. Martin. 1939. Plant histology as an aid in squirrel food-habit studies. J. Wildl. Manage. 3:265-268.

Baxter, G. 1977. Developments in wild horse management on the Monte Cristo wild horse territory. Proc. National wild Horse Forum. 17-19.

Beale, D. M. and A. D. Smith. 1970. Forage use, water consumption and productivity of pronghorn antelope in western Utah. J. Wildi. Manage. 34:570-582.

Cody, M. L. 1974. -Competition and the structure of bird communities. Princeton Univ. Press, Princeton. 318pp.

Cook, C. W. 1975. Wild horses and burros; a new management problem. Rangeman's J. 2:19-21.

Croker, 3. H. 1969. A method of estimating the botanical composition of the diet of sheep. N.Z. J. Agric. Res. 2:72-35.

Cutler, D. F. 1969. Anatomy of the monocotyledons. IV. Juncaies. Metcalfe, C. R., ed. Clarendon Press, Oxford. 357pp.

Davies, I. 1959. The use of epidermal characteristics for the identification of grasses in the leafy stage. Brit. Grassiand Soc. נ. 14:7-16.

Dearden, B. L., R. E. Pegan, and R. M. Hansen. 1975. Precision of micronistological estimates of ruminant food habits. J. Wildi. itanage. 39:402-407.

Evans, J. W., A. Borton, H. F. Hintz, and L. D. Vanvieck. 1977. ine horse. W. H. Freeman and Co., San Francisco. 7660p.

Ferrel, C. M. and H. R. Leach. 1950. Food habits of the pronghorn antelope of California. Calif. Fish and Game. 36:21-25.
and \qquad . 1952. The prongnorn antelope of California with speciāi reference to food habits. Caiff. Fish and Game. 38:235-293.

Fraker, S. B. and J. A. Brisncle. 1944. Measuring the local distribution of Ribes. Ecology. 25:263-303.

Fres, i. C., R. M. Hansen, and P. L. Sims. 1970. Estimating dryweignts in feces of herbivores. נ. Range Manage. 23:300-302.

Hansen, R. M. 1976. Foods of free-roaming horses in southern New Mexico. J. Range Manage. 29:347.
and D. N. Uechert. 1970. Dietary simiiarity of some primary consumers. Ecology. 51:540-648.

Havstad, K. M. and G. B. Donart. 1978. The microhistological technique: Testing two central assumptions in south-central New Mexico. J. Range Manage. 31:469-470.

Hickman, C. P. and C. P. Hickman, Jr. 1972. Biology of animals. C. V. Mosby Co., St. Louis. 522pp.

Hitchcock, C. L., A. Cronquist, M. Ownbey and J. 4. Thompson. 1955-59. Vascuiar plants of the Pacific northwest in Univ. of !lashington publications in biology, Vol. 17.
Part 1. 1969. Vascular cytogams, gymnosperms and monocotyledons. 914 pp.
Part 2. 1964. Salicaceae to saxifragaceae. 579pp. Part 3. 1961. Sexifragaceae to Ericaceae. 614pp. Part 4. 1959. Ericaceae through campanulaceae. 510pp. Part 5. 1955. Compositae. 343pp. Univ. of Wash. Press, Seattle.

Hjersman, H. A. and J. D. Yoakum. 1959. The pronghorn as a range animal. Trans. Interstate Antelope Conf. 1:76-83.

Hoover, R. L., C. E. Till, and S. Ogilvie. 1959. The antelope of Coiorado. Colo. Dept. Fish, Game, Denver. Tech. Bull. 4. 11000.

Krebs, C. J. 1972. Ecology: the experimental analysis of distribution and abundance. Harper and Row, New York. 694ep.

Kuchier, A. W. 1964. Potential natural vegetation of the conterminous United States. Amer. Geog. Soc., New York. Special Pub. 36. 116pp with separate maps.

Martin, D. J. 1955. Features of plant cuticle. An aid to the analysis of the natural diet of grazing animals with especial reference to Scottish hill sheep. Trans. Bot. Soc., Edinburgh. 36:278-288.

Mason, E. 1952. Food habits and measurements of Hart Mountain antelode. J. Wildi. Manage. 16:387-389.

Metcalfe, C. R. 1960. Anatomy of the monocotyledons I. Gramineae. Ciarendon Press; Oxford. 731pp. and L. Clark. 1950. Anatomy of the dicotyledons (2 Vol.). Ciarendon Press, 0xforc. 1500pp.

Milier, R. S. 1967. Pattern and process in competition. Pages 1-76 in j. B. Cragg, ed. Advances in Ecologicai Research. Vol. -. Academic press, Londion and New York.

Mitchell, G. N. and S. Smoliak. 1971. Pronghorn antelode range characteristics and food habits in Alberta. J. :"ildl. Manage. 35:238-250.

Monroe, נ. H. 1977. Wild horses and burros and the Bureau of Land Management. Proc. National Wild Horse Forum. 13-15.

Munz, P. A. 1968. A California flora and supplement. Univ. of Calif. Press, Berkeley. 1677pp. plus supplement, 224pp.

Neal, B. R., D. A. Pulkinen, and B. D. Owen. 1973. A comparison of faecal and stomach contents analysis in the meadow vole (iicorotus pennsyïcnicus). Can. J. Zool. 51:715-721.

Nelson, E. W. 1925. Status of the pronghorned antelope, 1922-24. U.S. Dept. Agric. Bull. 1346. 64pp.

01 sen, F. W. and R. M. Hansen. 1977. Food relations of wild free-roaming horses to livestock and big game, Red Desert, Wyoming. U. Range Manage. 30:17-20.

Oosting, H. J. 1956. The study of plant communities. W. H. Freeman and Co., San Francisco. 440pp.

Pellegrini, S. !. 1971. Home range, territoriality and movement patterns of wild horses in the Wassuk Range of western Nevada. M.S. Thesis. Univ. of Nevada, Reno. 39pp.

Pyshora, L. 1977. The pronghorn antelope in northwestern California. diidl. Manage. Admin. Report 77-2. Calif. Dept. Fish and Game. 46pp.

Sazama, J. E. 1975. Trophic relationshios of nine herbivores. :.S. Thesis. Colo. State Univ., Fort Collins. 33pp.

Schroder, G. D. and M. L. Rosenzweic. 1975. Perturjation analysis of competition and overlap in habitat utilization between jizociomus onciii and Jizocious merrimu. vecolocia 19:9-23.

Severson, K. E. and M. May. 1967. Food preference of antelope and domestic sheep in Nyomings' Red Desert. J. Range Manage. 20:21-25.

Snedecor, G. W. and H. E. Cochran. 1976. Statistical methods. Iowa State Univ. Press, Ames. 593pp.

Soil Conservation Service. 1970. Soil survey laboratory data and description for some soils of Nevada. Soil Survey Investigations Redort 23. 219p.

Sparis, D. R. and j. C. Malechek. 1962. Estimeting percentage dry weight in diets using a microscopic tecnnicue. \mathcal{A}. Range Manage. 21:254-255.

Stoddard, L. A. and A. O. Smith. 1955. Range management. MeGraw-Hill Book Co., New York. 433pp.

Storr, G. M. 1960. Microscopic Analysis of faeces, a technique for ascertaining the diet of herbivorous mamnals. Aust. J. Biol. Sci. 14:157-165.

Sundstrom, C. 1963. Water consumption by pronghorn antelope and distribution related to water in Hyoming's Red Desert. Proc. Antelope States Workshop. 3:39-46.

Thomas, H. S. 1974. Horses: Their breeding, care and training. A. S. Barnes and Co., Inc., Canbury. 559pp.

Todd, J. W. and R. M. Hansen. 1973. Plant fragments in the fecas of bighorns as indicators of food habits. J. Wildil. Manage. 37:363-365.
U.S. Dept. of the Interior. 1969. Sheidon National Antelope Refuge Charles Sheldon Antelope Range. 28pp.

Vavra, M., R. W. Rice, and R. M. Hansen. 1978. A comparison of esophogeal fistula and fecal material to determine steer diets. J. Range 偪age. 31:11-13.

Westoby, M., G. R. Rost, and J. A. Weis. 1976. Problems with estimating herbivore diets by microscopically identifying plant fracments from stomachs. נ. Mammal. 57:167-172.

Wolfi,. . O. 1978. Food habits of snowshoe hares in interior Alaska. J. V/11d1. Manage. 42:146-153.

Yoakum, J. 1972. Antelope--vegetative relationshids. Proc. Antelope States Workshod. 5:171-177.
APPENDIX A
DETAILED INSTRUCTIONS FOR THE PREPARATION OF REFEREICE AND FECAL MATERIAL MICROSCOPE SLIDES

These instructions follow, in part, those received from the Coloracio State University Composition Analysis Laboratory (R. M. Hansen, pers. comm.).

Reference Slide Preparation:

1. Plants to be used were separated by plant parts: ieaves, stems, and reproductive parts.
2. Material was oven dried for 24 h at 100 C to remove moisture.
3. Material was ground in a Wiley mill through a 20 -mesh screen (1 mm openings).
4. Ground material was washed in hot water over a 200 -mesh screen (C. 074 mm openings) to remove extraneous solubles and extremely small nondiagnostic particles.
5. Material was soaked in household bleach (Clorox) to remove pigments. The time was variable according to how pale the material appeared to the naked eye. Maximum time used was approximately 15 minutes.
6. Haterial was rewashed in hot water over the 200 -mesh screen to remove bieach and impurities caused by the bleaching action.
7. A small quantity of material was transierred to a glass slice mounting.

Note: As practice for fecal slide preparation, where the amount of material must be approximately the same for all slides, a template was fabricated to result in three identifiable fragments per microscope field at 125 power. This template was fashioned from a 0.6 mm thick eave gutter-hanger by drilling 5 mm diameter holes at 2.5 cm intervals for a total of 5 holes. This allowed preparation of five slides at a time with the prooer amount of material when using $22 \times 22 \mathrm{~mm}$ cover slips.
3. Tinee drops of Hoyer's mounting medium were appilied to and thoroughty mixed with the material on the slide. Hoyer's mounting medium is made by combining 200 g chloral hydrate crystals with 20 ce glycerine and adding 30 g pnotopurified gum arabic and 50 ec water.
9. A clean dissecting probe was used to distribute the materiai eveniy over an area aporoximateiy the size of the cover slip.
10. A cover slip was placed over the material and the slide heated over an alconol burner until all material was boiling eventy.

Note: A comparison was made between the use of plastic and glass
cover slips. Plastic cover slips produced the best results due to their ability to conform to the outline of plant fragments, thereby producing a thinner siide.
11. The slide was removed from the flame and immediately placed on a wet sponge to romove air bubbles.
12. The slide was then dried and transierred to the microscope for examination.
13. When microscopic examination revealed that meterial was suificiently bleached to make identification possible, the four remaining slides of the same species were prepared in the same manner.
14. Uhen microscopic examination revealed that the material had not been sufficiently bleached, a sud-routine was inserted between steps 7 and 8 above.

7a. Two to three drops of Hertwig's clearing solution were added to and thoroughly mixed with material on the slide. Hertwig's clearing solution is made by combining 270 g of ciloral hydrate crystals with 19 ec of 1 normal hydrochioric acid and adding 60 ce glycerine.

7b. The slide was heated over the alconol burner until solution was evacorated.

Note: Some practice of step 7b is reauired to prevent burning of the plant material.
15. Slides were placed in an oven and baked at 55 Cor 24 h minimum. This heating sets the mounting medium and renders a permanent slide.

Fecal Material Slide Preparation

1. Fecal material was removed from the freezer and emptied into beakers.
2. Beakers were covered with paper towels to preclude accidental contamination while allowing moisture to escape.
3. Material was oven dried at 100 C for 24 h to remove any moisture.
4. Material was ground in a Wiley mill tinrougn a 20 -mesh screen.
5. Material was placed in a large clean jar with a sealing lid and agitated for 15 minutes to thoroughly mix the subsamples.
6. Ground material was washed in hot water over a 200 -mesh screen to remove endogenous solubies and smâll particles.
7. Tine remainder of the procedure is as outlined in Steps 5 through 15 for reference material. Test slides made indicated that, in all samples of animal feces collected, bleaching with Clorox was sufficient and produced better results than the use of Hertwig's solution.

Note: The reascn for making the fecal material slides permanent was to preclude movement of fragments during microscopic examination.
APPENDIX BA DICHOTOMOUS KEY TO AID IN THE IDENTIFICATION OF EPIDERMALFRAGMENTS OF SELECTED FLORA IN THE
CHARLES SHELDOA ANTELOPE RANGE, NORTHWESTERN :NEVADA WITH ILLUSTPATIVE PHOTOMICROGRAPHS

1. The following key was designed as a tool, to be used in conjunction with photomicrographs, to aid in the determination of plant species that are components of the feces of large hervivores feeding in nortinwestern Nevada. It was not designed for absolute determination of all plant species.
2. The key is based on characteristics of leaf comoonents of the species coliected from the study area (Tabie 3). Like species growing under different conditions may vary slightly and may not fit chis key.
3. Identification characteristics can usually be seen at 125χ magniffication, but it was learned that $25^{\circ} \mathrm{K}$ M magnification increases confidence of positive identification.
4. Microhistological terms used in this key follow those used by Metcalfe and Clarke (1950), Metcalfe (1960), and Cutler (1969).
5. Small fragments of plant material seldom contain multivle diagnostic characteristics after passing through a herbivore's dingestive tract. Therefore, all clues must be consolidated to identify some species. Tricnomes seldom remain attached to the eoidermal fragments but serve as valuable clues as to the presence of certain soecies within the sample. There must be some degree of transfer of clues from one fragment to another in order to validate a characteristic that does not appear in the key.
6. Fragments from individual species may, and nommally do, key to more than one couplet.
7. Numbers in parentheses refer to photomicrograph olates in this appendix. Photomicrographs were taken at 250 X unless otherwise noted.
A. Cells primarily linear in arrangement
A. Cells usually not linear in arrangement
B. Two sizes of cells present - long cells and two types of short cells (suberose and silica)
B. Not as above
C. Cell outline irregular, lobed (jigsaw duzzle)
c

Key : ic. 1
Key :No. 2
Key No. 3
0

Key :10. 4
Key iNo. 5
1．Microhair present （1a）
Thinienoergia nicincmisonis
1．Microhair absent 2
2．Macrohair present 3
2．Macrohair absent 25
3．Stomata present 4
3．Stomata absent 17
4．Prickles present 5
4．Prickles absent 9
5．All stomata subsidiary cells with straignt sides （9a）
そoe日ど～ 6
5．Stomata subsidiary cellis not as above
6．Prickie height approximates .016 mm （2a）
Ees－uca iảancensis 6 ．Prickle height exceeds .016 mm
Agreviror scicatim 7．Prickle height approximates ． 02 mm （3a） 8
3．Prickle height approximates .024 mm （4a）
8．Prickle height aoproximates ． 032 m（1b）：Kihtensencia nunomizonis
9．Placrohair less than .08 mm in length（ $5 c$ ） 10
10．＂tacrohair less than ． 12 mm in length（5a） $i 1$
10．Macrohair exceeds .12 mm in length 13
11．Stomata length exceeds ． 04 min（7c）
11．Stomata length less than .04 mm Ezimus sinersus
12．Stomata length exceeds ． 032 mm（ 5 b） Si＝anion inswri＝
12．Stomata length less than .032 min（2b）
13．Macrohair length less than .16 mm （3b）
13．Macronäir length excaeds .16 mm 14
14．Stomata length greater than width（4b）
14．Stomata length less than or equal to width 15
15．Stomata subsidiary cells strainht（9a）
1ミ．Stomata subsidiary cells convex 16
16．Stomata subsidiary ceils low－dome shaded（3b）
16．Stomata subsidiary calis triangular shaded（ic）
17．Macrohair less than 08 mm in length（ 6 c ）
17．Macronair excesds ． 08 mm in length Eoneum flemanm 18
18．Macronair less than ． 12 mm in length 19
18．Macronāir exceeds .12 mm in length 21
19．Cell walls smooth in vicinity of hairs 20
19．Cell walls sinuous in vicinity of hairs （亏c）20．Ceils relatively short and wide（id）（id）
20．Cells relatively long and narrow （2c）
žumus cinerous
21．Macrohairs less than .16 mm in length（3b） Agropuron spication
21．Macrohairs exceed .16 mm in length 22
22．Macrohairs moderately long and flexuose（4c）
22．Macrohairs straight or slightly bent 23
23．Macrohairs with swollen bases（desk pen） （ab）

23．Macronairs not as above 24
24．Macrohairs appear rigid with slightly swoilen base（id）
Nuinienjerะシュ picincrascois 24．Macronairs appear flexible with sunken base（ôc）Eroma＝e＝ティmur
25．Stomãa present
26
25．Stomata àsent 43
26．Prickles present 27
26．Prickles absent 33
27．All stomata subsidiary cells with straight sides （9a）
 27．Stomata subsidiary ceils not as above 23
28．Prickle heicht approximates .016 mm （2a）
Feszuce itincensis 28．Prickle height exceeds .016 rाm
29．Prickle height approximates .02 mm （Ja）29．Prickle height exceeds .02 mmAraminen setuanuin
30．Prickle height approximates .024 mm 31
30．Prickle height exceeds ． 024 mm 32
31．Distal outline of prickle straight（6a） \＃cnceum zranumanemm
32．Prickle height anproximates .023 mm （3d）
32．Prickle neight aporoximates .032 mm
33．All stomata subsidiary cells with straight sides（Ba）
33．Stomata subsidiary calls not as above こoeizmia smisこaデ
34．Stomata length exceeds ． 06 mm （TC） ござmus sinereus
34．Stomata length less than ． 06 mm 35
35．Stomata length exceeds .04 min（Ta） Eoriaum ：vacuum
35．Stomata length less than .04 mm 36
36．Stomata length equal to or less than width 37
36．Stomata length exceeds width 38
37．Stomata subsidiary cells low－dome shaped（ib） 3romus tectorum
37．Stomata subsidiary cells triangular shaped（lc）そunienjerミia nichanisoris
38．Stomata length less than .032 mm 39
38．Stomata length exceeds ． 032 mm 40
39．Stomata subsidiary cells low－dome shaped or straight sided（Ab） shaped（2b）
39．Stomata subsidiary cells high－domed or triangular
39．Stomata subsidiary cells high－domed or triangular
Feszuan i幺幺incensis
40．Cell wall sinuation shallow （30）41
41．Stomata outline square in appearance（10a）
Note：Silica cells or bodies must be present for the remainder of this key．
42．Suberose pairs rare（Fd）
42．Suberose pairs common（Bc）

Sivarion Mstiniz Aシャッシinon sとicaum
43．Suberose pairs consist of large cork and small silica cells 44
43．Suberose pairs not as above 46
44．Suberose pairs relatively small （Ab）
ミニジ＝iunierizua
45．Silica bodies longer than wide with sinuous outline 46
45．Silica bodies not es above 43
46．Bodies small with deep indentation（Ad）
46．Bodies large with shallow indentation zンi゙ニ＝inusemiana
47．Bodies only slightly longer than wide （き）

48. Silica cells square and alternate with cork cells in long rows (1c)
48. Silica cells not as above 49
49. Silica calls rectangular and alternate with calls in long rows (6 c)
49. Silica cells not as above
cork
Eoräew bracing minerum
50. Silica cells much longer than wide with straight sides (8d)
Eromus =ecsorum50. Silica cells not as above51
5i. Silica cells are mid-length between long and cells (2d) cori
51. Silica celis appear as silicified long cells 52
52. Silica cell sides deeply indented (50)
52. Silica cell sides less deeply indented
Siむmion Mus=rizu
52. Silica cells appear between the veins
53. Silica cells appear over the veins (7b)Aropuron scicatumĒncieum ivioc=um

KEY NUMBER 2

1. Calls usually longer than 4 times width 2
2. Celis usuaily shorter than 4 times width 33
3. Prickles present (10c)Canea sp̌.2. Prickles absent3
4. Macronairs present 4
5. Macrohairs absent 12
6. Branched hair present (19a) Descurainia pinnaua 4. Hair not as above
 5. Two-armed hair present (19d)
7. Hair not as above
8. Hair not as above 6
9. Uniserrate, multicellular hair (pod-like) present (2la)
10. Hair not as above Segiむium zerッoiva=um
11. Uniserrate multicellular hair with knees present (13a)

12. Hatir not as above8
13. Arachnoid multiceiluiar hair oresent (14a) Enzon inccieiz
14. Hair not as above\cong
15. Large unicellular hair present (exceeds . 2 mm) (12a)
-mis missoumiensis
16. Hair not as above10
17. Short, stout unicellular hair with rounded tio present (21d)
18. Hair not as above Arenciric sep.
19. Short unicellular hair with rounded tip (13b)
20. Short unicellular hair with pointed tio (23b)

21. Crystals present13
22. Crystals absent15
23. Rod-like crystals present (12b)
24. Clustered crystals present -nis misacuniensis
25. All cells linear in arrangement (22a) Anenania sep.
26. Linear cells in bands, bordered by irreguiar cells (20a)

27. Stomata present 16
28. Stomata absent 24
16．Stomata arranged in rows 17
16．Stomata arranged randomiy 20
17．Interstomatal distance exceeds 3 times cell width（22b）
Anenaria s pe． 18
iT．Interstomatal distance less than 3 times cell width
13．Interstomatal distance approximates or exceeds twice stomata length（21b） Leprieiun perioniatum
18．Interstomatal distance approximates stomata length 19
19．Cell walls straight（11c）AVだum sep．
19．Cell walls sinuous（10d）Cure งセั．
20．Ceil walls strongly lobed（i3c）Levtociccuition purgers20．Cell walls essentially straight21
21．All cells linear in arrangement（19b） Descunainia yinnasa
21．Linear cells in bands bordered by irregular shaped cells 22
22．Cells essentially square at joint （23c）
22．Call juncture not as above
Zens＝2mon 35
23．Ceil wall appears dashed at certain focus（20a）
23．Cell wall appears entire at any focus （14b）
24．Cell walls strongly lobed （13d）Mite hosier24．Cell wails not as above
25
25．Cell walls sinuous（grass－like）（17a）25．Ceil walls not as above$\therefore \mathrm{xe}=\mathrm{sez}$ ．
25．Cells elongate－hexagon （11d）
25．Cells not as above
Аだium
27．Cell length exceeds 10 times ceil width 20
27．Cell length less than 3 times cell width 30
23．Cells extremely elongate－nexagon（12c） ミッショ แショscuriensiz
23．Cells not as above 29
29．Cells so long，juncture difficult to locate－（21t）

30．Cell walls appear＂dashed＂at certain focus3130．Cell walls appear entire at any focus（14b）
Frow recite
31．All coils linear in arrangement（22a）\therefore Aneurin ser．
31．Linear cells in bands bordered by irregular shaped cells
29. Cells usually irregular at juncture (20a)
30. Cells usually square at juncture over 2 cell widtins
from irregular shaped cells (23c) Eenszemon ser.
31. Stalked capitate glands present
32. Stalked capitate glands absent Eigaienus sem.
33. Hairs present 35
34. Hairs absent 42
35. Branched hairs present 36
36. Hair not as above 37
37. Branches less than . 03 mm in length (35d)
38. Branches greater than .04 mm in length (34c)
39. Heavy pointed unicellular hair present (exceeds .2 mm) (12a)
-ris misscumiensis37. Hair not as above33
40. Heavy rounded unicellular hair present
41. Multicellular uniserrate hairs present こigainerus sep.
42. Hair cells approximately equal in length 40
43. Terminal cell of hair elongated 47
44. Hairs erect, perpendicular to plant surface
45. Hairs lie at angle to plant surface (? ${ }^{\text {a }}$)
46. Hair base cell moderately dumbbell shaped (24d)

4i. Hair base ceil moderately ovate (25í)
47. Crystals present- 43
48. Crystals absent 44
49. Rod-like crystais present (12b) Inis misscumiensis
50. Crystals in bundles (24b)
51. Stomata present 45
52. Stomata absent 49
53. Stomaza length exceeds . 04 mm 46
54. Stomata length less than .03 mm 4
55. Cells hexagon in outline (24c)
56. Cell walls parallel (straignt and curved) (150)
57. Ceil walis sinuous (ilb)
58. Cell walls straignt
59. Cell junctures perpendicular to cell wall (id)
60. Cell junctures variable (pointed to square) (iFc) missouniensis
61. Calls hexagon in appearance
62. Call walls essentially parallel
63. Cell length essentially equal, hexagon shape strong (24c)
64. Cell length variable, hexagon shape weak (12d) -xis gaienus sep.
65. Cell outline appears "dashed" under certain focus (35c)
66. Cell outline appears entire at any focus Anubis sro.
67. Hair base cell holes numerous (34b)
68. Hair base call holes sparse
69. Hair base cell holes ovate (15b) Chansotinamus visciäifloms
E3. Hair base call holes round
70. Calls modified around hair base cell holes (25a)

1．Papilla present 2
1．Papilla absent 3
2．Cell outline distinct，eiongate padilla cells adpear as separate from epidermal cells（13d）－aptociaction puncens
2．Cell outline indistinct，papilla appears to be part of epidermai cells（14c） Enioz nocieio
3．Macrohair present 4
3．Macrohair absent 10
4．Hair uniserrate，multicellular，terminal cell whip－like（26a，26b） Aciniここea miここさす゚ごium
4．Hair not as above5
5．Hair uniserrate，multicellular with enlarged base， calls of equal length（26d） Eriseron aus＝inae
5．Hair not as above6
5．Hair long，pod－like in appearance（2la） 6．Hair not as above 7
7．Hair unicellular with swollen tips（3Ec） Enasen sex． 7．Hair not as above i
8．Hair long，arachnoid，multicallular（14a） 8．Hair not as above9
9．Hair long，uniserrate，multicellular，celis short
and wide（22b）
9．Hair uniserrate，multicellutar with enlarged junctures or short unicelluiar hairs with biunt tips（13a，13b）－epueciactition zuncens
10．Cells much longer than wide，linear in arrangement 11
10．Cells may be longer than wide，but not arranged linearly 12
11．Lobes seldom exceed one－half cell width（1亏c）
ここさこのciaceivon zungens
11．Lobes often equal to or greater than cell width，may be jordered by straight sided cells（14b，i4d）引hiow incoi̇ジシ
12．Numerous cells elongate but not linear in arrangement（25c）
12．Fey cells elongate 13
13．Modified macronair base cells present（27a）
71. Cells diverse in shape but generally of one size (Bd)14. Cells diverse in shape and size
Fnasena 5
72. Cells appear coarse, broad lobed (21c) 15. Cells appear less coarse, narrow lobed(28c)マニncmaum onicinale
1．Hair present 2
1．Hair absent 15
2．Stalked capitate giand present（29a） 3
2．Not as above 4
3．Hair short stout，unicelilular（29b）
3．Hair long，multicelluiar（36a）
4．Branched hairs present 5
4．Hairs not as above 6
5．Calls random in arrangement，generally round （35d）
Ancinis seะ．
5．Cells arranged in circular patterns，generaliv obiong（19c） Sescumainic こinnata
6．Hair unicellular with enlarged tio 7
6．Hair not as above 8
7．Hair short（． 04 mm ），flexuosa（29d） Cnencectium miomm Fロasenz sps．
8．Hair cylindrical，unicallular with round tip （22c）
8．Hair not as above Enrs＝emon specissus 9
9．Hair uniserrate，multicelluiar
9．Hair not as above 10
10．Hair stands perpendicular to surface （36a）
10．Hair lies parallel to suriace（30c）

ㄷume
11．Hair unicellular，straight，long or short
12
11．Hair unicellular，long，arachnoid 14
12．Hair long，straight or curved with modified base （31b，31c，31d）
12．Hair not as above－uミinus s＝y．
13．Hair robust，straight or curved with enlarged base（29b）
13．Hair less robust，lacking enlarged base（32a，32b）
14．Hair of one size，crystals lacking，hair base cellslocation independent of cell structure（37a，37b）
14．Hair of two sizes，crystals may or may not be present， nair base cells always at juncture of four or more
73. Crystals present 16
74. Crystais absent 13
75. Cell walls thick (30d, 37a)16. Cell walls thin
:iumeะ
76. Hair subceil holes always at juncture of four or more cells (16c)
77. Hair subceli holes lacking or not evident (30a) Cnenopocieium mimum
78. Stomata round 19
79. Stomata ovate 20
80. Diameter small (16d)
81. Diameter larger (22d)
Ericgonum spp.
82. Length exceeds . 04 mm (36d)
83. Length less than above
Erasera 5 ser.
84. Length exceeds . 036 mm (30b) (23a)
Chenopociun mismu
85. Length less than aboveor Ernsizmor, sueciosus
Pensiemen speciosus
86. Length exceeds . 03 mim (32c)Sumphovicaroos ミanisnizi2223
87. Smail, less than . 024 mm long, low domed (35c) (35c)
88. Stomata numerous (16d)
89. Stomata sparse (2Sc)Eriognive ser.

KEY WUMBER 5
1．Hairs present 2
1．Hairs absent 21
2．Hairs two－or thres－armed 3
2．Hairs not as above 5
3．Hairs two－and three－armed to complex （32d）
Agosemis 3．Hair always two－armed（20c） 4
4．Irregular cells accompanied by linear cells （20a）
4．All cells irregular in shape（20d）Anナemisia tric゙en兀ニニム
5．Hairs multicellular，uniserrate silicified （37c）Astor scopuiomum 6
6．Hair branched（34c）6．Hair not as above
Asテraccius ser；
7．Hair unicelluiar 3
7．Hair muiticelluiar 14
3．Hair tip enlarged（36c）
8．Hair not as above ミッニงยน งะะ
9．Hair short
9．Hair long 10
 i0．Hair not as above 11
11．Hair appears flexibie，enlarged base（18a）
11．Hair appears stiff，shorter than above（23b） Jenotiners＝unceevïotic
12．Hair arachnoid（17a，17b）
12．Hair tends to be straignt or abruptly bent

13．Hair long，curving，base modified（33c，33d） \therefore ． 13．Hair with abrupt bends，linear ceils may be present （ $14 \mathrm{a}, 14 \mathrm{~b}$ ）
14．Hair composed of oniy 2 celis
15
14．Hair composed of more than 2 cells 17
15．Terminai call flatzened，hair base unmodified （27c，27d）
1ミ．Terminal call round，hair base modified （25c）

16．Base cell＂dumbbell＂shaped，entarged cell juncture（24d，23b）
ラaiscuoriniza ncokemi
16．Sase cell ovate，cell juncture not eniarged （25c） シムiscmeriiza saci゙むニコニ
17．Hair long，cells short and wide （28b）
 18
17．Hair not as above
12．Hair robust，length less than five times base celllength（34d）

18．Hair less robust，length greater than five timesbase cell length19
19．Base cells compressed，terminal cells elongate （26d，27b）
19．Celis of approximate equal length 20
20．Hair long，oriented parallel to vegetative surface （15a） Thnusothanmus viscici：－Tomus zuமemuius
20．Hair shorter，oriented perpendicular to vegetative surface（15c） Cnmysothamnus visiciciだっoms ianceoこatius
21．Crystals present 22
21．Crystals absent 23
22．Crystals formed as a bundle（18b，18c）
23．Crystals formed as a cluster（17c）
23．Stomata round24
23．Stomata ovate 25
2＾．Stomata diameter exceeds ． 03 mm（28a）
24．Stomata diameter less than .03 mm （23d） ミijugern ごธumeri25．Stomata length equals or exceeds ． 04 mm25
25．Stomata length less than .04 man 31
25．Stomata width equals or exceed Asoseris sun．
26．Stomata width less than .04 man 27
27．Stomata width equals or exceeds .036 mm（15d）27．Stomata width less than ：036 mun
20．Stomata eiongate length exceeds width by ． 02 nm
（36d）
（36d）
28．Stomatz ovate，length exceeds width by less than .02 mm （20b）
29．Stomata length less than .03 mm 30
29．Stomata length exceeds .03 mm 32
30．Stomata appears elevated from vegetative suriace （i7d）
30．Stomata not as above 31
31．Stomata numerous，hair base $c \in 11 s$ much larger than surrounding cells（26d，27a）

31．Stomata soarse，hair base cells modified but much smaller than above（34a） dsテrąaius pursini
32．Ceil outline irregular to the point of appearing jagged（18d） Denotinera tanacevi゙oたia33
33．Cail walls thick，stomata numerous（37d） Aster secpubomm
33．Cell walls thin，stomata numerous or few 34
34．Stomata numerous 35
34．Stomata rare 36
35．Cell outline appears dotted（35a，35b） 35．Cell outline appears entire（25c）
36．Cell smaller，more elongate，with more distinct
angles（20d） 36．Cell larger，．rounder，with few distinct angles （28d）

1a. Muhlenbergia richardsonis

1c. Midhlenbergia riehardsomis;

1b. Muthlenbergia riehardsoni;

1d. Fiablenvernia pichum laonis

2.a. Festuca idahoensis

2c. Festuca idahoensis

2b. Festuca idahoensis

2d. Festuca idahoensis

3a. Agropyron spicatum

3c. Agropyron spicatam

3b. Agrolyron spicatum

3d. Manop!mon spicatum

4a. Stipa thurberiana

4c. Stipa thaberima

4b. Stipa thurberiana

4d. Stipa thuriemiana -

5a. Sitanion hustrix

5c. Sitanion hystivix:

5b. Sitauion hystrix

5d. Sitanion hystrix

6a. Hordewm brachyantherum

fic. Hordeum brachyantherrun

6b. Hordeum brachyantherun

6d. Hordenm iubatiom

7a. Hordeum jubatum

7c. E'tymus cinereus

7b. Hordeum iubatwn

7d. Elymus ai:tereus

Plate 7

8a. Elymus einerens

8c. Bromus tectorum

8b. Bromins tectorum

8d. Bromus tectorum

9a. Koeleria aristata

9c. Koeleria eristata

9b. Kocleria eristata

9d. Pot sonilhergii

10a. Poa sandbergii

10c. Carex: spl.

10b. Poa sandbergii

10d. Careas spp.

11a. Carex spp.

11c. Allium spp.

11b. Juncus spp.

lld. Allium spp.

12a. Tris missouriensis

12c. Tris missouriensis

12b. Iris missomriensis;

12d. Iri: missouriensi:;

13a. Leptodactylon pungens

13c. Teptodactylon pungens

13b. Leptodactylon pungens

13d. Leptodactylom pumens

14a. Phlox hoodii

14c. Phlow hoodii.

14b. Phlow hoodit.

14d. Ihlow hoodit

Plate 14

15a. Chrysothamus viscidiflorus

15c. Chrysothamus viscidiflomus

15b. Chrysothammus viscidiflopus,

15d. Chrysothammas viscidiflorms

16a. Eriogonum spp.

16c. Eriogomum spp.

16b. Eriogonuon spp.

16d. Rriogomam spp.

17a. Purshia tridentata

17c. Furshia tridentala

17b. Irurshia tridentata (100x)

17d. Eurshia trifentata

18a. Oenothera tanacetifolia

18c. Oenothera tanaeetifolia ($100{ }^{\circ}$)

18b. Denothera tanacetifolia

18d. Senothera tanacetifiolia

19a. Descurainia pimat.i

19c. Deseurainia pimata

19b. Descarainia pinmata

19d. Artemisia arbusenta

20a. Artemisia arbuscula

20c. Artemisia tridentatu

20b. Artemisia arbuscula

20d. Artemisia tridentata

21a. Lepidium perfoliatum (100x)

21c. Lepidiun perfoliatum

21b. Lepidiun perfoliatum

21d. Arenaria spp.

22a. Arenaria spp.

22c. Penstemon speriosus

22b. Arenaria spp.

22d. Penstimon spceiosus

23a. Penstemon spertionus

23c. Penstemon :bll.

23b. Penstemon spp.

23d. Rensternon:

2Aa. Zigademus spp.

24c. Zigademus spp.

24b. Zigademus spp.

24d. Bal:amor, hi::a hookcri.

25a. Balsamorhian hokeri

25c. Balsamorhiza sagittata

25b. Rat:amorhi:a hookeri

25d. Balsamorhisa sagittata

26a. Achillea millefolium (400x)

26c. Achillea millefolitm

26b. Achillea millefoliwn (100x)

26d. Frigeron alu: tinae (100x)

27a. Erigeron austinae

27c. Frigeron blowneri

27b. Erigerom austinae (100x)

27d. innienom bloomeri

28a. Erigeron bloomeri

23c. Taraxacum officinale

28b. Moraxacum officinale

28d. Faraxamm officinale

29a. Potentilla spp.

29c. Potentilla spp.

29b. Potentilla spr

29 d . Chenopodium mubu:

30a. Chenopodium rubrum

30b. Chenopodium rubrum

30d. Rumea: spp,

31a. Rumex spp.

31c. Lupinus spp.

31b. Inріпия sup.

31d. taqinus spp. (100x)

32a. Symphoricarpos parishii

32c. Symphoricarpos parishii

32b. Symboricarpos parishii

32d. Agoseris spr. (100X)

33a. Agoseris spp.

33c. Astragalus purshii (100x)

33b. Agoseris nip.

33d. Astragatus purshii

34a. Astrayains purshii

34c. Mstragutus s?l?

3 Mb. Aatrequ?:as:

31d. ilariogulum memulis

35a. lianinverum acmatis

35c. Aments yto

35d. Anabis sin?

36a. Castilleia s!r.

36c. Frasera slp.

37a. Tit tradymia canmeene

37c. Aster soophtorm

37d. Antare :ampulation

[^0]: The differential between higns and lows exceeded 20 C for each of the six sumner months monitored. The average annual precipitation for the past

