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Chapter 1 

The Population as a Biological 
Entity 

Demography, the study of vital statistics of populations, is a sub-discipline of the field of 
Population Ecology, which in tum is a sub-discipline of Biology. In the material that 
follows, I deal with the treatment of vital statistics as they contribute to the 
understanding of wild populations of both higher plants and animals. Demography is 
more than simply compiling data on births and deaths. Taken broadly, demographic 
analyses, with associated projections and interpretations, comprise the essence of the 
study of population dynamics. 

Populations take their place in the hierarchy of biological organization between the 
individual level and the community level. Groups of individuals make up a population, 
while groups of populations (perhaps with trophic structure and mutual adjustment) 
make up a community. Specifying the characteristics of individuals in a population give 
rise to the many definitions of population. 

In statistics, a population is a defined unit from which samples are taken, and about 
which inferences are made. Individuals may be washers or light bulbs, as well as biological 
organisms. Biologically, population has been accorded several meanings, all being useful 
in specific instances, and in general requiring a modifying adjective for precise 
communication. Thus, population has been used to refer to: 

1. a group of individuals comprising several species with a particular impact on a 
defined area ( e.g. herbivore population or predator population); 

2. a group of individual s from a common upper level taxon inhabiting a specified area 
( e.g. ungulate or rap tor population, grass population); 

3. a group of individuals belonging to a specified taxon inhabiting an area that is 
politically defined ( state, county, management area, etc.); 

4. a group of individuals of the same species, located such that individual actions may 
affect others occurring in a common area ("metapopulation"); and 

5. members of a randomly interbreeding group (Mendelian or panmictic population, 
commonly called a deme). 

1 
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CHAPTER 1. TIIE POPULATION AS A BIOLOGICAL ENTITY 2 

As a general working rule in Ecology, "population" refers to definition 4 above, 
however, this is by no means always the case. In this manual, I use "population" in the 
context of definition 4, referring to a group of individuals of the same species in a 
particular area at a particular time. Further, the size of this area should be such that the 
potential exists for each individual to somehow affect other individuals, either by direct or 
by indirect means . The size of this particular area is thus arbitrary and will be 
determined, among other factors, by mobility, behavioral, and reproductive, 
characteristics of that species. Basically, this means that a population is a collection of 
individuals about which it is meaningful to speak of density-dependent mechanisms. In 
practice this definition encompasses the statisticians' use of population by adding these 
biological considerations. 

It is justifiable to speak of a population as a biological entity because populations 
possess characteristics that individuals lack. For this reason, it is not meaningful to 
compute estimates of vital statistics for a group of individuals that do not comprise a 
population in the sense of definition 4 above. Group characteristics are what is being 
estimated, and thus the group must be a functional biological entity. These group 
characteristics are of three general types. 

1. A population has abundance or density. We will not be concerned here with 
techniques involved in the determination of density, but rather with the question: 
"What do we need to know about a population in order to be able to predict its' 
abundance ( or some other response) at some specified future time?" There are two 
ways of treating abundance that makes the term not strictly synonymous with 
density. The special case of zero density may be treated as "no abundance", and 
forms the basis for the study of determinants of distributional patterns within a 
species. Consideration of changes in relative numbers through time is another way 
of looking at abundance, and is the interpretation to which the above question is 
directed. 

2. The second type of general population characteristics are the primary determinants 
of population size; natality, mortality, immigration, and emigration. Any factor that 
affects population size is ultimately expressed as one of these 4 parameters. Some 
factors that affect population size are external, and are not to be considered as 
characteristics of a population ( e.g . catastrophic weather that causes unusual 
mortality) while other factors may affect the prima ,ry population parameters in a 
more general sense. It is these latter affects that demographic analyses could 
profitably be designed to discover. 

3. Finally, characteristics such as age structure, gene frequencies, dispersion and 
spacing of individuals, behavioral responses such as population agression levels, 
physiological attributes such as Oxygen demand reductions because of group 
denning or huddling, comprise the remainder of population level at,tributes . 

Population characteristics are statistical reductions and reformations of various 
measurements taken from individual members of the population. Thus, an individual may 
contribute to the birth of a given clutch but a population has a birth rate; an individual 
has age, but a population has age structure; a,n individual houses its respective genome, 
but a population has genetic structure in the form of gene frequencies. Emergent 
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CHAPTER 1. THE POPULATION AS A BIOLOGICAL ENTITY 3 

properties of populations occur as a result of interactions among individuals that are 
often density-dependant. 'While there is yet no evidence that populations are intrinsically 
regulated as a matter of course, the general effects of intraspecific competition and various 
mutualisms are generally acknowledged. 

Aside from the problems of obtaining and interpreting demographic data, a real 
challenge exists in the determination of boundaries within which a valid, 
density-dependent, interacting group of individuals is functioning. Such a decision poses 
little problem with closed populations, where all members of that species that are present 
can be thought of as participating in various popula .tion processes. The other extreme is 
evidenced by extensive homogenous expanses inhabited by members of a species, where 
discrete populations are not found; rather, some kind of a continuum with dynamic 
population edges must exist. In both cases, immigration and emigration are of varying, 
and often unknowable, intensities. These problems cannot be solved by any typical 
analysis , and are pointed out to emphasize the need for interpretive abstractions that 
remain aware of the dynamic nature of boundaries that delimit populations. 

All too often, a "population" is treated as a group of individuals within some 
artificially defined political boundaries. Demographic analyses are directed to the 
biological characteristics of a population; it is senseless to analyze political units as if they 
had some relevancy to biologic function. The procedures described in this manual assume 
that the abstract nature of population boundaries are understood; they assume that a 
demographic unit is an interacting group of individuals of the same species, functioning 
together with demographic awareness and in a potentially density -dependent manner. 
Failure to take cognizance of this fact will get you wrong answers more often than not. 
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Natality 

Information on natality is typically presented as an age- specific column that represents 
the expected number of female offspring produced per female of age x to x + 1. The 
natality schedule is denoted by mx. Prior to describing the mathematical decomposition 
of of mx, it is necessary to take a brief aside and provide some definitions. 

Birth: To give rise to, to originate. Restricted to mammals. (see parturition). 

Birthrate: Births per capita per unit time. Restricted to mammals. See natality. 

Breed, Breeding: To produce offspring by hatching or parturition. Restricted to emergence 
of offspring from egg or uterus. "Breeding season" is that period of time during 
which offspring are being produced. "Breeding" does not refer refer to copulation 
behavior. 

Copulation : Act of engaging in sexual intercourse. 

Fecundity : Number of offspring, either in the form of eggs laid or live births produced, per 
breeding female per effort. Denoted Fx. 

Fertility: Capable of producing offspring (presence of viable sperm in male, or ovulation in 
female). 

Gestation: Act of producing offspring "in utero;" period of time between fertilization and 
parturition. Restricted to mammals. 

Incubation: Period of time between egg-laying and hatching. Analogous to gestation, 
applied to to Fishes, Amphibians , Reptiles, and Birds, and other animals that lay 
eggs. 

Hatch: To emerge from an egg. Analogous to parturition in mammals. Applied to fishes, 
amphibians, reptiles, birds, monotreme mammals, and other animals that lay eggs. 

Mate, Mating: See Copulation. 

Natality: Number of female offspring produced per female per unit time. Applies to all 
organisms. See Birthrate. Denoted as mx. 

Parturition: Act of giving birth. Restricted to mammals. See Birth. 

4 
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Proportion Breeding: Proportion of females in the x to x + 1 age class actually producing 
offspring at time t. Denoted as fJx• 

Proportion Males: See Sex Ratio At Fertilization ( or birth, hatching, germination, etc.). 

Reproduction: To make a representation of ... , to produce offspring. The process of 
offspring actually emerging from egg or uterus. See Breed. 

5 

Sex Ratio At Fertilization: Expressed as proportion males or ratio of males to total clutch. 
Denoted Px• Px = males/ ( males + females). Therefore, the proportion of females 
at fertilization is 1 - Px· In this manner, Sex Ratio At Birth is bounded by O (all 
females) and 1 ( all males). This approach standardizes raw sex ratios, which 
otherwise lack bounds, and is thus a statistic that provides generality across various 
populations. 

Depending on the species being examined, natality data range from relatively 
simple to almost impossible to obtain. In order to simplify data collection, to facilitate 
interpretation, to better reflect the complex biology involved, and indeed, to promote 
clear thinking about reproductive attributes, natality, mx, is decomposed into a function 
containing 3 elements 

(2.1) 

The first right hand term is Fecundity, denoted by Fx. Fecundity is defined as the 
number of offspring (both male and female), either in the form of eggs laid or live births, 
produced by a breeding female per reproductive effort. Fecundity is thus an age-specific 
value that reflects "clutch size." 

The second term describing natality is sex ratio at birth, denoted Px· Again, sex 
ratios will be expressed as proportion males; i.e. Px = males/ (females + males). The 
proportion of females per clutch per event is 1 - Px· Since natality strictly refers to female 
offspring, only the proportion of the clutch that is female is represented. 

The third term describing natality is Proportion Breeding, denoted f3x• Proportion 
breeding is an age-specific value referring to the proportion of females in an age class that 
actually produce offspring during any specified breeding season. 

Natality, as defined here, is a more complex function than that usually found in the 
demographic literature; the final result, however, is similar. The decomposition and 
detailed specification of the biological factors that proximally define mx provide 
interesting insight into population processes. 

The inclusion of natal sex ratio is a straight-forward method of relaxing the implicit 
assumption of equal sex ratios at birth contained in most population models. Even 
though there is compelling theoretical argument for why natal proportions of males to 
females should be equal, there are significant deviations of this pattern in a variety of 
well-studied species that warrant the inclusion of natal sex ratios as a definitive part of 
any discussion of natality. Some of the theoretical foundations for a tendency toward sex 
ratios of 0.5 are considered in an appendix to this chapter . 

Decomposing mx into the 3 terms Fx, Px, and f3x, confounds distinctly different 
biological processes affecting the demographic character of the population. First, given 
that a female will produce offspring, how many daughter offspring she will produce 
( expected clutch size and expected sex ratio) is determined primarily by a long 
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evolutionary history and adaptation to large vs. small clutches and life history strategy 
that results in even vs. uneven sex ratios. These ultimate factors are offset in any specific 
breeding period by th e ecologically proximate question of whether or not a given female 
produces offspring at all. 

The number of offspring a female can or will produce in any given reproductive 
event is, to a large extent, a consequence of the evolutionary history ("reproductive 
strategy") of the species. Thus, expected clutch size for equids is 1; for bighorn sheep 
usually 1 occasionally 2; for white-tail deer 1, or 2, or occasionally 3; kangaroo rats 2 or 3; 
ground squirrels 6 to 8; mourning doves 2, most gallinacious birds 10 to 14; the same for 
many species of lizards and snakes; and among the fishes a range of from 10 to 14 up to as 
much as 1 million (codfish). These expected clutch sizes are subject to modification by 
proximate factors such as nutrition, but in general, one expects a species to produce 
clutch sizes that are statistically "standard" for that species. Consider, for example, what 
physiological and morphological changes would have to occur if horses were to begin to 
successfully produce clutch sizes of 8 to 10. Or the behavioral changes (e.g. protection of 
offspring) that would be requ ired for non-extinction if codfish were to shift to clutch sizes 
of around 4 or 5. In this context, clutch sizes are clearly fixed genetically within certain 
limits. Similar arguments apply for sex ratios . 

The evolutionary consequences that set the boundaries on clutch size for a species 
are the ultimate determinates, and may produce clutch sizes that are essentially without 
variance ( e.g. horses == 1, doves == 2), or larger clutches where variances on the expected 
values may be relatively high. 

Optimum (in some sense) values of clutch size can be modified by a variety of 
proximate ecological factors, among which for example, nutrition induced stress often 
plays an important role. Nutrition mediated clutch sizes often reflect severe resource 
shortages, and are often demonstrated by poor body condition, particularly among gravid 
females. 

While nutrition mediated clutch sizes can be a significant factor, a generally more 
important demographic question is whether or not an average female will breed at all in 
any given season. Proportion breeding is a highly variable demographic component, 
determined, apparently, by a host of ecologically relevant, proximate attributes of the 
ecological environment. Such factors include nutrition, behavior, competition, and abiotic 
resources , to mention just a few. As will be demonstrated in later chapt ers of this manual, 
the proportion of females breeding in any given season is a more influential demographic 
attribute than are clutch size differences that represent only a small percentage of the 
expected production of offspring. The relative influence of changes in proportion breeding 
is dependent on the size of the original Fx values; other things being equal, proportion 
breeding has grea ter effect if Fx is high and less effect when Fx is 1 or perhaps 2. The 
demographic attributes Fx, Px, and f3x have been treated as if they were fixed, parametric 
values for a given population. A moment of reflection will indicate that because these are 
expected values , higher moment statistics are available and worthy of estimation. While it 
is t rue, for example, when Fx == 1 that variances are relatively uninteresting , as clutch 
sizes increase the distributional properties of variance, skewness, and kurtosis become 
interpretive aids to understanding a species' reproductive responses to variable 
environments. Such stochastic attributes of popula tion models will be described in a 
subsequent chapter. 
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Chapter 3 

Analysis of Survival Data 

3.1 Basic Life Tables 

Strictly speaking, a life table is a schedule of survivors over time. Other useful information 
may be derived from a survival schedule and such data, taken together, comprise an 
"expanded" life table. Columns in an expanded life table that are derived from a survival 
schedule may be similarly computed for males or females; several additional columns that 
require natality data are specific to females, and allow estimations of such attributes as 
rates of increase, reproductive values, and generation times. 

A life table is a method for logically arranging much of the descriptive demographic 
data for population analysis. Good life table data are difficult to obtain and subject to 
considerable misinterpretation. The basic assumptions involved in life table construction 
are described in Chapter 7. ·while these assumptions are critical to interpreting results of 
a demographic analysis, mechanical aspects of computing various elements in an 
expanded life table do not require an explicit statement of critical assumptions at this 
time. I first cover the mechanics, and will return to the assumptions and interpretations 
in later chapters. 

A cohort is a group of individuals of the same age at the same time within a 
population. Occasionally the term cohort is used to refer to size classes in plants. This is 
not an entirely suitable use of the term; the general effect of doing so will be covered in 
Chapters 10 and 11. 

At any time t, there are nx,t individuals in the cohort (x refers to the age of 
individuals, and t to time). Time and age are described in arbitrary units of time 
depending upon the intent of the investigator. For example, time and age in a deer or 
wild horse population are typically expressed in terms of single year intervals because 
these animals have only a single breeding season each year. In small mammal populations 
gestation times are on the order of several weeks to only a few months, and demographic 
projections can make best use of such time intervals. Pooling reproductive time intervals 
is reasonably done provided you are willing to sa.crifice the some resolution in your 
analyses resulting from the use of stacked expectations (means of means). Such pooling is 
frequently done over 5 yr intervals ( as in studies in human demography or other long lived 
species), or perhaps over generation times. 

Arithmetically, obtaining a survival schedule is a simple operation. The age of a 
new cohort at t = 0 is x = 0. Starting with a cohort of 100 females no = 100 at t = 0, and 

7 
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X nx Dx ix mx lxm x 
0 100.00 40.00 1.000 0.0 0.000 
1 60.00 24.00 0.600 0.75 0.450 
2 36.00 14.40 0.360 0.75 0.270 
3 21.60 8.64 0.216 0.75 0.162 
4 12.96 5.19 0.129 0.75 0.096 
5 7.77 3.11 0.077 0.75 0.057 
6 4.66 4.66 0.046 0.75 0.034 

Table 3.1: A Simple Expanded Life Table 
Sample data show calculations based on an initial cohort of 100 females, 60% per year 
survival, and expected production of female offspring. All numbers are truncated at accuracy 
level shown to avoid "rounding rules." 

applying a constant survival rate of 60% per time period, the cohort will decrease in size 
so that at t = l, n 1 = 60 (60% of the initial 100 individuals survive to enter the next age 
class). At t = 2, n2 = 36; at t = 3, n3 = 21.6 and so on . Note that as time increases by 
unit intervals, the individuals age by one unit, but that there are always 40% fewer than 
the previous time unit contained. These results can be seen in Table 3.1. 

Notationally, nx refers to the number of individuals in a cohort that are alive at the 
beginning of the age interval x to x + 1. The number that die during this interval is Dz. 
Columns of n:,; and Dr express information in terms of numbers of individuals in the 
cohort. A more general procedure is to convert this information to proportions 
(probabilities), thus allowing comparisons among cohorts of different initial sizes. The n:,; 
column provides a simple probability of survival by dividing the number that enter a 
given age x by the number that started the cohort , n0 • This result is denoted by lr, and is 
given by 

l - n:,; 
:,; -

no 
(3.1) 

This new value, lx, is the probability that an individual of age zero will survive to 
enter some subsequent x th age class. The various values of lo, li, ... , l.,,, where w 
represents the final age class, may be graphed again st age resulting in a "survival curve " 
or "survival schedule ;" several examples of lr curves are shown in Figure 3.1. Table 3.1 
shows an expanded life table with 6 columns. 

In this manner, for a cohort of any initial size, standardized curves are produced for 
comparison with other populations or species. It is a common practice in some disciplines 
( although by no means necessary or desirable) to express survival schedules as numbers 
surviving per thousand. This is readily accomplished by multiplying each lr by 103

• Base 
cohorts to any power of 10 are obtained in a similar fashion. Two columns in the 
expanded life table, Lr and Tx, are best understood when cohorts are treated as 
individuals rath er than probabilities; for wild populations, it is common to use a base of 
1,000 for these columns. Demographers studying human populations typically use a base 
cohort of 10,000. 
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Figure 3.1: Three Typical Survival Schedules 
Survival curves representing three possible life history stmtegies. Curve a represents a 
species with a relatively constant mortality such as bird species. Curve b might be indicative 
of large mammal species that has low early mortality and a higher old age mortality. Curve 
c represents a species with high inf ant mortality such as many fishes. 
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3.2 Expanded Life Tables 

Given schedules of lx and mx, a variety of informative columns may be generated to form 
an "expanded" life table. Most of these columns may be calculated by starting with the lx 
schedules described above. It is important to recognize that there is no new information 
in these derived columns; they simply represent different ways of expressing the original 
survival data to facilitate various interpretations. 

As mentioned, lx is the probability that an individual of age zero will survive to 
enter the x th age class. Once an individual reaches the x th age class, the probability that 
it will survive to enter the x + l age class is denoted by Px• Age- specific survival, Px, is 
obtained by dividing the number of individuals that survived the x th age class (those 
entering the x + l age class) by the total number of individuals that entered the x th age 
class, 

nx+l 
Px= - ­

nx 
(3.2) 

Because age-specific survival rate is independent between age classes, the 
probability at x = 0 of surviving to enter the Xth age class, lx, is equal to the product of 
the successive age-specific survival rates. This is 

x-l 
lx IT Pi (3.3) 

i=O 

PoP1P2···Px-2Px - 1 (3.4) 

( n1) ( n2) ( nx-l) ( nx ) 
no n1 nx - 2 nx - 1 

(3.5) 

nx 
(3.6) 

no 
(3.7) 

The inverse of lx is the death schedule, dx, the probability at x = 0 of an individual 
dying during the age interval x to x + l, and is obtained by 

dx lx - lx+l (3.8) 
nx - nx+l 

(3.9) = 
no 

Dx 
(3.10) = 

no 
(3.11) 

Age-specific death rate, qx, is the probability that an individual that enters the x th 

age class will die before entering the x + l age class. Thus, qx is the compliment of Px, 
and is obtained by 

dx 
(3.12) qx 

ix 
nz-n;r+l 

no (3.13) 
.&. 
no 
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nx - nx+l 
nx 

1- nx+l 
nx 

1- Px 

11 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

The number of animal time units to be lived in the x to x + 1 age class, Lx, is 
obtained by integrating the Ix curve, 

rx+l 
L(x) = Jx=x lxdx 

Values of Lx are reasonably approximated by 

L - lx + lx+l 
X - 2.0 

(3.18) 

(3.19) 

under the assumption that lx is linear between x and x + 1. Values of Lx are more readily 
interpreted when put into a base cohort of 1,000 (or whatever you prefer), thus, Lx(10 3) 

represents the number of individual "time units" to be lived by that cohort during the age 
x to x + 1. The concept is analogous to "man hours" or "man years." 

The estimated total number of animal time units remaining to be lived from age x is 

(3.20) 

where w is the last age class that contains individuals. Contrasting to Lx, the values of Tx 
are the area under the lx curve from age x until no individuals remain from the cohort. 
Tx is reasonably approximated by summing appropriate values of Lx 

(3.21) 

Life expectancy, ex, or mean length of life remaining to an individual entering age x, 
is 

_ f:-x lxdx ex - ~==-- -
Ix 

Values of ex are reasonably approximated by 

Tx 
ex= -

lx 

(3.22) 

(3.23) 

The lxmx column is an age-specific, expected-reproduction column, with 
expectations based on an individual of age x = 0. If all females were to live to the 
maximum age, and breed at the expected rate throughout, the Gross Reproductive Rate 
(GRR) would be achieved. Thus GRR is the sum of the mx values 

w 

GRR = I: mx (3.24) 
x=O 
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However, since the average individual dies somewhere between x = 0 and maximum age, 
w, the GRR represents a maximum potential reproductive rate, that will rarely be 
achieved. 

Summing the lxmx column provides the Net Reproductive Rate,R 0 , and is the 
average number of female offspring ( or in an extended case to be discussed later, males) 
that will be produced by the average female in the population. 

(3.25) 

A complete equation structure for an expanded life table is shown in Table 3.2, and 
examples of the calculations are provided in Tables 3.3 and 3.4. Each of these columns 
have useful information, subject to restrictive assumptions concerning the validity of the 
data involved. Although the calculations for an expanded life table are relatively simple, 
several implicit constraints can make the results less than useful. Chapter 7, 
Assumptions, details pitfalls in life table construction and interpretation. For the time 
being, and for the purpose of building a foundation for such interpretations, I assume that 
these qualifications are met. 

3.3 A Gross Estimate of Survival 

A time -specific column of number of individuals per age class ( denoted n' x to distinguish 
from a true cohort, or diagonal column of nx) while not adequate for most purposes, can 
none-the-less provide a careful analyst with relevant information. One procedure for 
extracting a pooled (population level) survival estimate is as follows. 

Given a time-specific column of individuals per age class, n~, straighten out the 
curve by natural log transform 

nx = ln(n~ + 1.0). (3.34) 

Denote the age class vector as x and the vector of n~ as n'. Then conduct a linear 
least-squares unreplicated fit of ln n' against x as follows: 

the mean of x is 

the mean of n' is 

the sum of squares of x is 

the sum of squares of n' is 

w = numberof ageclasses 

1 w 

x= - LXx 
W x=O 

1 w 

n' = - L nx 
W x=O 

w 
~ ,2 ~ ,2 
L.;n =L.;n x 

x=O 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 
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X nx 
0 no 
1 n1 
2 n2 

X nx 

X Px 
0 1 - qo 
1 1- q1 
2 1 - q2 

X 1 - q:r; 

X Fx 
0 Fo 
1 A 
2 F2 

X 
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Dx Ix dx qx 
no - n1 no/no lo - li do/lo 
n1 - n2 ni/no 11 - l2 di/Ii 
n2 - n3 n2/no /2 - /s d2/l2 

nx - nx+l nx/no Ix - lx+l dx/lx 

Lx Tx ex Px 
(lo+ 11)/2 Lo+ L1 + · · · + Lw To/lo Li/Lo 
(/1 + /2)/2 L1 + L2 + · · · + Lw Tifl1 L2/L1 
(/2 + /3)/2 L2 + L3 + · · · + Lw T2//2 L3/L2 

(ix+ lx+i)/2 L~=x Lx Tx/lx Lx+i/Lx 

1- Px f3x lxmx Vx C:r; 

1 - Po f3o lomo 
1 - Pl f31 l1m1 
1 - P2 f32 l2m2 

1 - Px see below see below 

w 

T = I:x>. - xlxmx 
x=O 

Ro = t lxmx f}U1 Juft f ~ 
x=O 

w 

1 = I:>. - xlxmx ~ 
x=l , 

r ln >. , 

Table 3.2: Equation Structure for an Expanded Life Table 
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(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3 .31) 

(3.32) 

(3.33) 
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X nx Dx lx dx qx Px Lx Tx ex 
0 475.82 235.94 1.000 0.495 0.495 0.504 752.0 1500.0 1.500 
1 239.88 118.95 0.504 0.249 0.495 0.504 379.1 747.9 1.483 
2 120.93 59.96 0.254 0.126 0.495 0.504 191.1 368.8 1.451 
3 60.97 30.24 0.128 0.063 0.495 0.504 96.3 177.6 1.386 
4 30.73 15.24 0.064 0.032 0.495 0.504 48.5 81.3 1.258 
5 15.49 7.68 0.032 0.016 0.495 0.504 24.4 32.7 1.004 
6 7.81 7.81 0.016 0.016 1.000 0.0 8.2 8.2 0.500 

X t mx 
0 .0 0.0 
1 1.0 0.504 
2 1.0 0.254 
3 1.0 0.128 
4 1.0 0.064 
5 1.0 0.032 
6 1.0 0.016 

L 6.0 0.999 

Table 3.3: An Expanded Life Table 
Table 3. 3A. Expanded life tables from data presented in Table 6. 1. All numbers are truncated 
at accuracy level shown. Table 3.3A. A time-specific analysis taken from Year 9, Table 4, 8. 
See also Table 6.2 for further extensions. 

X nx Dx lx dx qx Px Lx Tx ex 
0 167.40 66.96 1.000 0.400 0.400 0.600 800.0 1929.9 1.929 
1 100.44 40.18 0.600 0.240 0.400 0.599 479.9 1129.9 1.883 
2 60.26 24.11 0.359 0.144 0.400 0.599 287.9 649.9 1.805 
3 36.15 14.46 0.215 0.086 0.400 0.600 172.7 361.9 1.675 
4 21.69 8.68 0.129 0.051 0.400 0.599 103.6 189.2 1.459 
5 13.01 5.20 0.077 0.031 0.399 0.600 62.1 85.5 1.100 
6 7,~ 7.81 0.046 0.046 1.000 0.0 23.3 23.3 0.500 

'\\ 
X mx lxmx 
0 0.0 0.0 
1 1.0 0.600 
2 1.0 0.359 
3 1.0 0.215 
4 1.0 0.129 
5 1.0 0.077 
6 1.0 0.046 

I: 6.0 1.4298 

Table 3.4: table3.3B 
Table 3.3B. A cohort analysis that starts in Year 3 and ends in Year 9 of Table 4.8. See 
also Table 6. 2 for further extensions. 
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the sum of the cross products is 

~ ,2 ~ , (I:~-o Xx)(L~-o n' x) 
6xn = 6Xxnx 

x=O W 
(3.40) 

the slope of the regression line is an instantaneous survival rate across all members of the 
sample population, and is given by 

I:xn'2 

Sxn' = 2 , I:x (3.41) 

which can be converted to an annual survival rate by 

Sx,n' = e5 (3.42) 

and annual mortality rate, Q, is 
Q = 1- s. (3.43) 

For some purposes, it is worthwhile to back-calculate a "smoothed" column of 
number of individuals per age class, based on the regression equation obtained as above. 
This is done by obtaining the intercept, a, by 

a= n' - (s * x) (3.44) 

then, 
(3.45) 

estimates the zero age class, and 

n'x =ea+ s(xx); x = l, 2, · · · ,w (3.46) 

gives the remaining numbers of individuals per age class. The smoothed column of n' 
obtained in this manner can be used in various population projections, under the 
assumption that the annual survival rate, S, obtained in this manner is what you have 
chosen to evaluate in your modelling exercises . You must be aware that massaging the 
data in this manner is a bit extreme, and that the questions that you pose of the model 
must be carefully evaluated. 

Appropriate confidence limits can be computed for the instantaneous survival rate, 
and the estimated n'x values; see any introductory text in regression statistics for these 
calculations. A test of significance on the slope of the regression line is not relevant, and 
should not be computed. Given a data set that contained many samples n' from a range of 
real populations, i.e. a sample of time -specific age structures from a variety of populations 
and/or times, it is interesting to compare such popula.tions in the above manner . 
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Chapter 4 

Elementary Population 
Projections 

Assuming for the moment that new individuals in the population are produced during the 
same brief time interval, the number of females that enter the population at time t is 
obtained by multiplying the number of females in each age class by the expected 
production of female offspring for that age class. These products are then summed across 
the a.ge classes. 

For example, in Table 4.2 the number of new individuals entering the population at 
year 3, the top entry, nx =0,t=3, in year 3 is obtained by summing the products of the 
number of females in a given age class and their expected production of female offspring. 
This is 

( 4.1) 

or more specifically, 

317.0:::: 82.0(1.25) + 41.0(1.5) + · · · + 32.4(1.5) + 21.6(1.5) (4.2) 

In general, the number of age-zero females that enter the population during the tth 

time interval is expressed as: 
w 

n 0 ,t = L nx,tmx4.l 
x=l 

( 4.3) 

Although portions of individuals typically do not survive in real populations, several 
decimal places should be carried in these calculations to avoid accumulating excessive 
rounding errors. 

Individuals in any given age class at time t that survive until time t + 1 will appear 
in the next age class. The diagonal transitions in the projection table a.re obtained by 
multiplying the number of individuals in an age class at time t by the age-specific survival 
rate, Px• In Table 4.2 individuals in the year 3 column move to year 4 as shown in the 
sequence given in Table 4.1. In general, individuals move from one age class to the next 
according to 

nx+l,t+l = nx,tPx4,2 ( 4.4) 

which projects age classes along the diagonals in the projection table. 

16 
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AGE Year 3 Year 4 AGE 
0 317.0(.2) 63.4 1 
1 82.0( .4) 32.8 2 
2 41.0( .6) :::: 24.6 3 
3 19.2(.6) 11.5 4 
4 28.8(.6) 17.3 5 .. 32.4( .6) 19.4 6 0 

6 21.6(.0) 0 

Table 4.1: Survival Transitions 
See text for discussion. Note that individuals in age class 6 have no chance of surviving to 
another time interval. 

A diagonal such as one in Table 4.2 starting at year 3 with no :::: 317.0 and ending at 
year 9 with n5 :::: 3.3 consists of all same -age individuals, and represents the fate of a 
cohort. Such a cohort may be analyzed by means of an expanded life table as described in 
Chapter 3 and a true rate of increase can be derived for the population. Tables 4 .2, 4.3, 
and 4.4 are life history projections that demonstrate effects of varying probabilities of age 
specific survival, resulting in decreasing, stable, and increasing populations. Natality is the 
same for each projection. All populations have reached stable age distribution by year 12. 
Population projections such as those shown in Table 4.2 and 4.3 assume that age-specific 
survival rates remain constant over time. Because environments within which populations 
exist are dynamic, this assumption almost never holds true for wild populations. Thus 
elementary population projections contain some particularly restrictive assumptions, and 
while they may indicate possible population trends, cannot be considered as a prediction 
of population growth. In spite of these restrictions, age schedules can provide information 
on certain population potentials; in later chapters I consider the effects of failed 
assumptions, and some methods for examining population data in spite of the problems. 

Examine the life history projections shown in Tables 4.1 A through C, and 4.2 A 
through C, and convince yourself that the equations actually provide a projection of the 
population through time. Th ese simple examples were contrived to emphasize specific 
points; however, conducting projections with more complex survival and fertility 
schedules is similar. 

The proportion of the total population contained in the x to x+ 1 age class at time t 
is obtained by dividing the total number of individuals in the age class nx,t by the total 
number of individuals in the population Nt (see Table 4.5). From Table 4.3, Year 9, the 
proportions (i.e. age structure) in the age classes are shown in the rightmost column of 
Table 4.5. 

A column of proportions as in Table 4.5 indicates the age structure of the 
population at time t. Und erstanding age structure patterns is a fundamental challenge in 
analyses of wild populations. Often the biologist has only age structure data with which 
to work, and must estimate the various population parameters from such data. Raw age 
structure, denoted Cx, is the proportion of the population in the x to x + 1 age class at 
time t. Successive elements of the age structure column are given by 

( 4.5) 
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Age Px m,x Year 0 Year 1 Year 2 Year 3 Year 4 
0 .2 0.00 400.0 512.5 410.1 317.0 237.7 
1 .4 1.25 200.0 80.0 102.5 82.0 63.4 
2 .6 1.50 150.0 80.0 32.0 41.0 32.8 
3 .6 1.50 100.0 90.0 48.0 19.2 24.6 
4 .6 1.50 50.0 60.0 54.0 28.8 11.5 
5 .6 1.50 25.0 30.0 36.0 32.4 17.3 
6 0 1.50 10.0 15.0 18.0 21.6 19.4 

I: 935.0 867.5 700.6 542.1 406.8 

Age Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 
0 132.3 103.5 79.2 60.4 46.0 35.1 26.8 
1 35.0 26.5 20.7 15.8 12.1 9.2 7.0 
2 19.0 14.0 10.6 8.3 6.3 4.8 3.7 
3 15.2 11.4 8.4 6.4 5.0 3.8 2.9 
4 11.8 9.1 6.8 5.0 3.8 3.0 2.3 
5 8.9 7.1 5.5 4.1 3.0 2.3 1.8 
6 4.1 5.3 4.3 3.3 2.5 1.8 1.4 

I: 226.4 176.9 135.5 103.3 78.8 60.0 45.8 

Table 4.2: Table 4.lA 
A. Decreasing population with Px and mx as shown, >. = 0.763. 

Age Px mx Year 0 Year 1 Year 2 Year 3 Year 4 
0 .3 0.00 400.0 641.2 656.0 655.4 643.9 
1 .5 1.25 200.0 120.0 192.4 196.8 196.6 
2 .7 1.50 150.0 100.0 60.0 96.2 98.4 
3 .7 1.50 100.0 105.0 70.0 42.0 67.3 
4 .7 1.50 50.0 70.0 73.5 49.0 29.4 
5 .7 1.50 25.0 35.0 49.0 51.4 34.3 
6 0 1.50 10.0 17.5 24.5 34.3 36.0 

I: 935.0 1088.7 1125.3 1125.1 1106.0 

Age Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 
0 627.7 636.0 636.0 635.0 634.0 633.4 633.3 
1 189.0 188.3 190.8 190.8 190.5 190.2 190.0 
2 96.6 94.5 94.2 95.4 95.4 95.3 95.1 
3 68.8 67.6 66.1 65.9 66.8 66.8 66.7 
4 48.2 48.2 47.3 46.3 46.1 46.7 46.7 
5 33.0 33.7 33.7 33.1 32.4 32.3 32.7 
6 14.4 23.1 23.6 23.6 23.2 22.7 22.6 

I: 1077.7 1091.5 1091.7 1090.1 1088.4 1087.3 1087.2 

Table 4.3: Table 4.1B 
B. Stationary population with Px and mx as shown, >. = 0.999. 
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Year 5 
175.1 
47.5 
25.4 
19.7 
14.8 
6.9 

10.4 
299.7 

Year 5 
629.8 
193.2 
98.3 
68.9 
47.1 
20.6 
24.0 

1081.9 
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Age Px nix Year 0 Year 1 Year 2 Year 3 Year 4 
0 .4 0 400.0 770.0 961.0 1180.1 1434.2 
1 .6 1.25 200.0 160.0 308.0 384.4 472.0 
2 .8 1.50 150.0 120.0 96.0 184.8 230.6 
3 .8 1.50 100.0 120.0 96.0 76.8 147.8 
4 .8 1.50 50.0 80.0 96.0 76.8 61.4 
5 .8 1.50 25.0 40.0 64.0 76.8 61.4 
6 0 1.50 10.0 20.0 32.0 51.2 61.4 

E 935.0 1310.0 1653.0 2030.9 2469.1 

Age Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 
0 2150.3 2678.5 3305.2 4076.2 5027.6 6203.7 7658.0 
1 697.4 860.1 1071.4 1322.1 1630.5 2011.1 2481.5 
2 344.2 418.5 516.1 642.8 793.2 978.3 1206.6 
3 226.6 275.4 334.8 412.9 514.3 634.6 782.6 
4 147.6 181.3 220.3 267.8 330.3 411.4 507.7 
5 94.6 118.1 145.0 176.2 214.3 264.2 329.1 
6 39.3 75.7 94.5 116.0 141.0 171.4 211.4 

E 3700.1 4607.5 5687.2 7014.0 8651.2 10674.7 13176.9 

Table 4.4: Table 4.lC 
C. Increasing population with Px and mx as shown, >. = 1.234. 

AGE nx/ Nt proportion 
0 635.0/1090 .1 = 0.583 
1 190.8/1090.1 = 0.175 
2 95.4/1090.1 = 0.088 
3 65.9/1090.1 = 0.060 
4 46.3/1090.1 = 0.042 
5 33.1/1090.1 = 0.030 
6 23.6/1090.1 = 0.022 

Table 4.5: Calculations of Age Structure 

The nx data were taken from Year 9, Table ,f .3. 
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Year 5 
1743.6 
573.7 
283.2 
184.5 
118.3 
49.2 
49.2 

3001.6 
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Age Year 0 Yea.r 1 Year 2 Year 3 Year 4 Year 5 Year 6 
0 100.00 78.75 62.50 49.60 39.36 31.23 24.78 
1 50.00 40.00 31.25 25.00 19.84 15.74 12.49 
2 25.00 20.00 16.00 12.60 10.00 7.93 6.29 
3 12.50 10.00 8.00 6.40 5.04 4.00 3.17 
4 6.25 5.00 4.00 3.20 2.56 2.01 1.60 
5 3.12 2.50 2.00 1.60 1.28 1.02 0.80 
6 1.56 1.25 1.00 0.80 0.64 0.51 0.40 

I: 198.43 157.50 125.00 99.20 78.72 62.46 49.53 

Age year 7 Year 8 Year 9 
0 19.66 15.60 12.37 
1 9.91 7.86 6.23 
2 4.99 3.96 3.14 
3 2.51 1.99 1.58 
4 1.25 1.00 0.79 
5 0.64 0.50 0.40 
6 0.32 0.25 0.20 

L 39.39 31.26 24.71 

Table 4.6: A Decreasing Population 
A. Age-specific survival 40% for all age classes. Production of 1 female offspring per year 
beginning at age 1. Finite rate of increase, ,\ = 0. 79343. 

A fundamental law of demographic mechanics is that although populations may 
have shifting age distributions at certain stages of growth, given constant survival, ix, and 
natality, mx, they tend toward, and will ultimately reach an unchanging or "stable" age 
distribution. A stable age distribution is where the proportions of individuals in each age 
class remains constant through successive time iterations. While stable age distributions 
never seem to be found in wild populations, the concept is of major theoretical 
importance. Populations may be increasing, not changing, or decreasing, and still be at 
stable age distribution. A special case of stable age distribution, called "stationary" age 
distribution, exists when the population abundance as well as age structure is unchanging. 
Ta.bles 4.6, 4.7 and 4.8 illustrate decreasing, stationary, and increasing populations that 
have reached stable age distribution. Note that stable age distribution is determined by 
the relative values of lx and mx, not by the initial age structure. 

Tables 4.6, 4. 7, and 4.8 show 3 life history projections that demonstrate effects of 
varying probabilities of survival across age classes. Note that even though each population 
has identical initial numerical and age structures, all have different stable age distributions 
as a consequence of differing ix schedules. All populations shown are at stable age 
distribution by Year 9. All numbers have been truncated at accuracy level shown. 

Tables 4.9, 4.10, and 4.11 show life history projections that demonstrate the effects 
of varying initial age composition. For these tables, all Px = 0.6, mo = 0.0, and all other 
mx entries are 1.0. The popula.tion in Table 4.9 was started with 100 age zero individuals; 
Table 4.10 was started with 100 age 1 individuals; and Table 4.11 was started with 100 
age 4 individuals. Note that the age zero offspring in Tables 4.10 and 4.11 are produced 
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Age Year 0 Year 1 Year 2 Year 3 Yea.r 4 Year 5 Year 6 
0 100.00 98.43 97.65 96.87 96.09 95.31 94.53 
1 50.00 50.00 49.21 48.82 48.43 48.04 47.65 
2 25.00 25.00 25.00 24.60 24.41 24.21 24.02 
3 12.50 12.50 12.50 12.50 12.30 12.20 12.10 
4 6.2,5 6.25 6.25 6.25 6.25 6.15 6.10 
5 3.12 3.12 3.12 3.12 3.12 3.12 3.07 
6 1.56 1.56 1.56 1.56 1.56 1.56 1.53 

I: 198.43 196. 76 195.29 193.72 192.16 190.59 189.03 

Age Year 7 Year 8 Year 9 
0 93.75 92.28 92.21 
1 47.26 46.87 46.49 
2 23.82 23.63 23.43 
3 12.01 11.91 11.81 
4 6.05 6.00 5.95 
5 3.05 3.02 3.00 
6 1.53 1.52 1.51 

I: 187.47 185.93 184.40 

Table 4.7: A Stationary Populat ion 
B. Age-specific survival 50% for all age classes. Production of 1 female offspring per year 
beginning at age 1. Finite rate of increase,>. = 0.99179. 

by the 100 females in age classes 1 (Table 4.10) and 4 (Table 4.11). All populations are at 
stable age distribution at t = 9. All numbers have been truncated at accuracy level 
shown. The finite rate of increase, >. = 1.19014 for each of these 3 projections. 
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Age Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 
0 100.00 118.12 140.62 167.40 199.26 237.17 282.27 
1 50.00 60.00 70.87 84.37 100.44 119.56 142.30 
2 25.00 30.00 36.00 42.52 50.62 60.26 71. 73 
3 12.50 15.00 18.00 21.60 25.51 30.37 36.15 
4 6.25 7.50 9.00 10.80 12.96 15.30 18.22 
5 3.12 3.75 4.50 5.40 6.48 7.77 9.18 
6 1.56 1.87 2.25 2.70 3.24 3.88 4.66 

I: 198.43 236.24 281.24 334.79 398.51 474.31 564.51 

Age Year 7 Year 8 Year 9 
0 335.92 399.80 475.82 
1 169.36 201.55 239.88 
2 85.38 101.62 120.93 
3 43.04 51.22 60.97 
4 21.69 25.82 30.73 
5 10.93 13.01 15.49 
6 5.51 6.56 7.81 

I: 671.83 799.58 951.63 

Table 4.8: An Increasing Population 
C. Age -specific survival 60% for all age classes. Production of 1 female offspring per year 

(-· .. beginning at age 1. Finite rate of increase, lambda== 1.19014. 

Age Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 
0 100.00 60.00 72.00 86.40 103.68 124.42 149.30 
1 60.00 36.00 43.20 51.84 62.20 74.64 
2 36.00 21.60 25.92 31.10 37.32 
3 21.60 12.96 15.55 18.66 
4 12.96 7.77 9.33 
5 7.77 4.66 
6 4.66 

I: 100.0 120.00 144.00 172.80 207.36 248.83 298.52 

Age Year 7 Year 8 Year9 
0 176.36 209.95 249.93 
1 89.57 105.82 125.97 
2 44.79 53.74 63.48 
3 22.39 26.87 32.24 
4 11.19 13.43 16.12 
5 5.59 6.71 8.06 
6 2.79 3.35 4.03 

I: 352.71 419.90 499.85 

Table 4.9: table4.3A 
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Age Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 
0 100.00 120.00 144.00 172.80 207.36 248.83 293.93 
1 100.00 60.00 72.00 86.40 103.68 124.42 149.28 
2 60.00 36.00 43.20 51.84 62.20 74.64 
3 36.00 21.60 25.92 31.10 37.32 
4 21.60 12.96 15.55 18.66 
5 12.96 7.77 9.33 
6 4.66 

I: 200.00 240.00 288.00 345.60 414.71 497.60 587.86 
- . 

(_ Age Year 7 Year 8 Year 9 
0 349.92 416.54 495.82 
1 176.36 209.95 249.93 
2 89.57 105.82 125.97 
3 44.79 53.74 63.48 
4 22.39 26.87 32.24 
5 11.19 13.43 16.12 
6 5.59 6.71 8.06 

I: 699.83 833.08 991.64 

Table 4.10: table4.3B 
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Age Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 
0 100.00 120.00 144.00 151.20 181.44 217.73 261.27 
1 60.00 72.00 86.40 90.72 108.86 130.64 
2 36.00 43.20 51.84 54.43 65.31 
3 21.60 25.92 31.10 32.65 
4 100.00 12.96 15.55 18.66 
5 60.00 7.77 9.33 
6 36.00 4.66 

I: 200.00 240.00 288.00 302.39 362.87 435.45 522.45 

Age Year 7 Year 8 Year 9 
0 310.73 369.51 439.39 
1 156.76 186.44 221. 71 
2 78.38 94.05 111.86 
3 39.19 47.02 56.43 
4 19.59 23.51 28.21 
5 11.19 11.75 14.10 
6 5.59 6.71 7.05 

I: 621.45 739.02 878.77 

Table 4.11: 
Life history projections showing effects of varying initial age composition. For these tables, 
all Px values are 0.6. For the mx vector, m1 = 0.0 and m1 through m6 are set to 1.0. 
Population 4. 9 was started with n0 = 100.0 individuals . Population 4-10 was started with 
n1 = 100.0, and population 4.11 was initialized with n4 = 100.0 individuals. Note that in 
the Tables 4 .10 and 4 .11 the 100 n0 individuals in Year 0 are offspring of the initializing 
100 individuals in ages 1 and 4 respectively. 



.• 

Chapter 5 

Contents of this Chapter are pending. 

( 
\ 

25 



Chapter 6 

Derivable Population Attributes 

Given fixed schedules of ix and mx and sufficient time, populations tend toward and 
finally reach a "stable age distribution." 

Once stable age distribution is reached, population growth with respect to time is 

In integrated form this is 

dNt 
-=rN dt t 

Nt = N 0ert 

Taking natural logs of both sides of Equation 6.2 gives 

lnNt = ln No + rt 

(6.1) 

(6.2) 

(6.3) 

from which a graph of Loge of population size against time is a straight line of slope r. 
Replacing t with 1 in Equation 6.2 defines the finite rate of increase, lambda, 

N1 = Noer (6.4) 

= No>.. (6.5) 
ln >.. = r, (6.6) 

>.. = er (6.7) 

(6.8) 

Given a population that has attained a stable age distribution and is increasing at 
the finite rate >.. per unit time, the ratio of total population size at t - 1 divided into the 
population size at t is the finite rate of increase. This fact is expressed as 

(6.9) 

Solving for Nt gives 
(6.10) 

and, continuing backward 1 time step gives 

(6.11) 
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and reaching backward for /;; time periods gives 

Nt = >.kNt-k (6.12) 

Here again is the geometric growth series, with the difference that Equation 6.12 is 
reaching back into time for values of Nt - k and computing successive steps results in 
population size for time t. 

Given a sequence where it may be assumed that all members entered the population 
at age no (for example, starting about Year 6 in Table 4.8), then the number of 
individuals in any given a.ge x to x + 1 at t is 

(6.13) 

In Equation 6.13, the number of individuals in the x to x + 1 age class at time t is 
the total number that began that cohort at t - x, (that is no,t-x) multiplied by the 
probability of survival from age O to age x (ix). 

As discribed in Chapter 4, the number of new n 0 individuals entering the 
population at t is produced by the number of reproducing females in the various age 
classes at time t. This relationship was 

w 

no,t = L nx,tmx 
I,w 

(6.14) 

Then, utilizing Equation 6.14, to express the number of age zero individua ls 
entering the population , but substituting, no,t- xlx , from Equation 6.13 for nx,t in the 
right hand side gives 

Dividing both sides by no,t gives 

w 

no t = ~ no t- xlxmx 
' L-, ' 

x=l 

(6.15) 

(6.16) 

As previously discus·sed , th e rate of increase of total population size once stable age 
has been attained is, from Equation 6.12, for k seasons of population growth 

~ = ).k 
Nt-k 

(6.17) 

Since the proportion in any given age class does not change in a stable age 
distribution, this result will hold for any age class . Thus, the number of age zero 
individuals entering the population at time t ( that is no,t) has a similar relationship to the 
number of new individuals at t - 1. The rate of increase of the zero age class is given by 

Taking reciprocals, this becomes 

~=Ax. 
no,t-x 

no,t-x = >. - x. 
no,t 

(6.18) 

(6.19) 
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Substituting this result in Equation 6.16 , we obtain 

w 

1 = L _x-xlxmx 
x-=:l 

28 

(6.20) 

Equation 6.20 is a solution for the finite rate of increase, .X, in a seasonally breeding 
population with overlapping generations. It is a discrete version of 

(6.21) 

which is appropriate for continuously breeding populations. 

6.1 Rates of Increase 

Equation 6.20 is a polynomial in lambda a.nd, given constancy in lx and mx, can be solved 
by inserting trial-and-error values of .X. A simple first approximation of lambda can be 
obtained by applying Equation 6.9 to total population, Nt, sizes from population 
projections such as those in Tables 4.2 and 4.3, and 4.8. Thus, the finite rate of increase 
can be obtained for any set of lx and mx schedules in 2 ways: ( i) iterate through a life 
history projection as in Table 4.2; or ( ii) solve Equation 6.20 by inserting trial-and-error 
values of lambda. 

An instantaneous rate of increase, r, is obtained by taking the natural log of lambda 
(see Equation 6.2). Considerable confusion exists as to what this rate of increase really 
implies. Various instantaneous rates of increase exist according to the restrictions, or 
assumptions, placed on the lx and mx schedules in Equations 6.20 or Equation 6.21. If 
environmental conditions are optimal in all respects for the growth of a population, the 
rate of increase is appropriately called "biotic -potential ," and can be denoted by rp. 
Under specified conditions of temperature, humidity and other abiotic factors, and with 
biotic factors (such as competitors, predators, etc.) being optimal for population growth, 
the intrinsic rate of increase, rm is obtained. Specifying the abiotic and biotic 
environments - both of which are presumably sub -optimal for population growth -
produces a rate of increase denoted by r8 • 

Each of the 3 rates of increase (rp, rm, and rs), are computed in identical ways as 
described above. The differences betwe en them lie in the assumptions placed on the 
respective lx and mx schedules. Additionally, each of these 3 rates of increase contains the 
implicit assumption that the population is at a stable age distribution; thus, each rate of 
increase is to be considered as a constant under specified conditions. 

A fourth rate of increase, denoted r, can be obtained (see Equation 6.2). Here only 
density estimates over time are required. By conducting a regression analysis of lnNt 
against t , a straight line of slope r is obtained. This rate of increase, r, under conditions 
of specified assumptions described above, can estimate any of the 3 rates of increase: 
rp, rm or r 8 • Conversely, r may not be an estimate of any of these 3 rates of increase, 
because the restrictive assumptions are not met. It will most often be the case that wild 
populations are not at stable age distribution, and that estimating the rate of increase as 
described in this chapter is often simply not worth trying. 

These instantaneous rates of increase may be either negative, zero or positive. 
Finite rates of increase such as .X or R0 may be either zero or positive. 
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6.2 Stable Age Distribution 

It may be seen, from Tables 4.2, 4.3, and 4.4, that an iterative solution for stable age 
distribution is obtained from the life history projections. By having an estimate of >. for a 
population, several additional demographic parameters become available. 

The equation for stable age distribution can be derived by starting with the 
equation for age structure (see Chapter 3). In this equation, Cx was used to denote simple 
age distribution. Stable age distribution will be denoted by ex , By utilizing concepts 
developed above in the derivation of>., we can obtain the derivation for stable age 
distribution. As previously indicated , the equation for computing age structure , which 
was written as (now substituting c for C) 

is modified using the relationship 

to obtain 

nx t 
Cx,t = w ' 

Ly=O ny,t 

no,t-xlx 
Cx t = --'-- - -' I::;=o no,t-yly 

Dividing the numerator and denominator of the right hand side by no,t gives 

no,t-xlx/ no,t 
Cx t = -- "--------'--, I::;=0 no,t-yly / no,t 

and by applying the fact that 
, -x _ no,t-x 
A - l 

no,t 

the result is 
>.- xzx 

C -- -- --x,t - "w .).-Y[ 
L.,y;::;0 y 

(6.22) 

(6.23) 

(6.24) 

(6 .25) 

(6.26) 

(6.27) 

Using Equation 6.27, stable age distribution can be obtained as shown in Tables 6.1 
and 6.2. The stable age distribution obtained in Table 6.1 is the same as the age 
distribution for Table 4.8 Yea.r 9. This shows that stable age distributions also may be 
obtained by iterating through a life history projection, or by utilizing Equation 6.27 if an 
estimate of >. is available . 

6.3 Generation Time 

It has been shown previously (Chapter 3) that Net Reproductive Rate, R0 , of a 
population starting with an n0 cohort at stable age distribution is the sum of the 
products of the expected age-specific production of females and the respective age-specific 
probabilities of survival. This value is the net reproductive rate of the population over the 
time an average female is expected to remain in the population, and is expressed as 

(6.28) 
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X nx lx mx .A-x .A-x lx Cx 
0 475 .82 1.000 0.0 1.000000 1.000000 0.500002 
1 239.88 0.504 1.0 1.000012 0.504146 0.252974 
2 120.93 0.254 1.0 1.000024 0.254156 0.127078 
3 60.97 0.128 1.0 1.000036 0.128145 0.064073 
4 30.73 0.064 1.0 1.000048 0.064583 0.032036 
5 15.49 0.032 1.0 1.000060 0.032552 0.016276 
6 7.81 0.016 1.0 1.000072 0.016411 0.008206 

I: 1.999993 0.999745 

Table 6.1: Stable Age Distribution from Time-Specific Data 
Calculation of Stable Age Distribution with nx data from time-specific column in Table 4. 8 
Year 9. llalue of A used was 0.999988. 

X nx lx mx .A- x .A-xzx Cx 
0 167.40 1.000 0.0 1.000000 1.000000 0.499999 
1 100.44 0.600 1.0 0.840231 0.504139 0.252069 
2 60.26 0.360 1.0 o. 705988 0.254156 0.127078 
3 36.15 0.215 1.0 0.593193 0.128130 0.064065 
4 21.69 0.129 1.0 0.498419 0.064595 0.032297 
5 13.01 0.077 1.0 0.418787 0.032565 0.016282 
6 7.81 0.046 1.0 0.351878 0.016419 0.008209 

I: 2.000104 0.99999 

Table 6.2: Stable Age Distribution from Cohort Data 
Calculated stable age distribution from cohort (time -dynamic) analysis. Cohort is taken 
from Table 4,8 beginning in Year 3 and ending Year 9. Value of A used was 1.190149. 



(' 

CHAPTER 6. DERIVABLE POPULATION ATTRIBUTES 31 

or approximately as 

(6.29) 

If, in its lifetime, a female is expected to produce R0 female offspring, and 
generation time is defined as the time it takes a population at a stable age distribution to 
grow by the factor R o, one notion of generation time may be derived as follows. Given 
that a population is growing according to 

let T be generation time, and substitute T for t as follows 

Nr = Noerr. 

Dividing both sides by N 0 gives 
Nr rT --e 
No - ' 

but since Nr/No is the rate that the population will grow during the time T , then 

Nr - - R - erT No - 0 - • 

Taking 
ln R 0 = ln erT = rT 

and dividing both sides by r, an expression is obtained for generation time, T, as 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

( 6.34) 

(6.35) 

\iVhile this expression may seem to make sense for some situations, it is undefined 
for the case of a stationary age distribution where r = 0, thus making the solution 
unsatisfactory as a general property of populations. 

Other derivations for generation time follow from the notion that equations of the 
form 

w 

Ex= I:xfx 
x = O 

(6.36) 

are a general solution for the first moment of fx; that is, the mean of the discrete 
probability density function fx• One such measure is "cohort generation time," Tc, which 
is expressed as 

(6.37) 

or approximately 
1 w 

Tc = RI: xlxmx (6.38) 
0 x=O 

Here we have the mean of the lxmx schedules divided by the net reproductive rate. 
This equation for Tc represents the mean age of mature females at the birth of all of their 
female offspring. It is scaled externally ( outside the integral) by the fact that the 
population may not be at a stationary age distribution. 
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A slightly different interpretation of generation time can be obtained as 

or approximately as 
w 

T = L x>.-xlxmx 
x=O 

32 

(6.39) 

(6.40) 

In this case, T represents the mean age of mature females at the birth of their first 
female offspring. Thus, Tis the expected value (mean) of the density function 

(6.41) 

Only in the case where the population is at a stationary age distribution 
(>. = 1, R 0 = 1, r = 0) will Tc and T provide the same result. The value T "corrects" for 
the fact that the population may not be at a stationary age distribution (note, however, 
that the population must still be at stable age distribution). However, these corrections 
appear within the integral; that is, lxmx for ea.ch x is being scaled by e-rx while Tc scales 
the summed products of the lxmx schedule. 

Thus, Tc and T present rather different biological interpretations, with Tc being an 
estimate of the mean age of mature females at the birth of all offspring, and T being an 
estimate of the mean age of mature females at birth of their first offspring. In a growing 
population where younger age classes are heavily represented, T will be smaller than Tc, 
since the probability that any given a.ge zero individual will survive to reproduce is 
proportionally high. In a declining population the reverse is true, and T will be greater 
than Tc. The important point to recognize is that neither of these values, Tc or T, is 
necessarily preferable, and that both provide somewhat different information about 
population mechanisms. Taken together, they provide a better understanding of the 
population than either presented alone. A sample computation of these two generation 
times is shown in Table 6.3. 

6.4 Reproductive Value 

If a female is removed from a population, its yet-to-be -born offspring (and their offspring, 
etc.) also are removed. Some age classes have the potential to contribute more future 
offspring than others. Thus, a female past reproductive a.ge can be removed without any 
depressant effect on population growth rate, while a female just entering breeding age 
might have quite a strong effect, particularly in a small population. This concept can be 
observed in Chapter 4 Tables 4.9 and Table 4.10. 

Each population in Tables 4.9 and 4.10 starts with 100 individuals and, once stable 
age distribution is reached, will grow at the same rate because the lxmx schedules are the 
same. It can be seen, however, that the population in Table 4.10 contains roughly twice 
as many individuals in Year 9 as does the population in Table 4.9. Since both of these 
populations were started with the same number of females, one might guess that in this 
example a one-year old female is worth about 991.42/499.64 = 1.98 times as much as a 
zero-year old fem ale. 
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X Z:c mx >.-:,: xlxfflx )..-Xxlxmx 
0 1.0000 0.0 1.0000 0.0 0.0 
1 0.6000 1.0 0.8402 0.6000 0.5041 
2 0.3600 1.0 0.7059 0.7200 0.5083 
3 0.2160 1.0 0.5932 0.6300 0.3737 
4 0.1296 1.0 0.4984 0.5184 0.2583 
5 0.0777 1.0 0.4188 0.3885 0.1627 
6 0.0466 1.0 0.3518 0.2796 0.0983 
I: 3.1365 1.9056 

w 

Ro = Llxmx (6.42) 
x=O 

= 1.4299 (6.43) 

(6.44) 

1 w 

Tc = R :Z:xlxmx (6.45) 
0 :,::::;:Q 

= 0.6993(3.1365) (6.46) 

= 2.19 (6.47) 

(6.48) 

w 

T = L >.-xxzxmx (6.49) 
x=O 

= 1.90 (6.50) 

(6.51) 

Table 6.3: Calculating Generation Times 
Calculation of 2 different genemtion times, Tc and T. Data taken from the Cohort schedule 
in Table 3.4. The value of>. used is 1.19014. 
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X lx 1Hx _),X >,~'/Ix 
0 1.000 0.0 1.000000 1.000000 
1 0.600 1.0 l.J901 -Hl 1.9 35G7 
2 0.360 1.0 l.'116 1!:3;3 3.934537 
3 0.215 1.0 1.085 75-'l 7 .8407 15 
4 0.129 1.0 2.006283 15.552582 
5 0.077 1.0 2.387758 31.009841 
6 0.046 1.0 2.841766 61.777210 

X )_-Y )..-Yf ymy L~--:11 >.- Yfymy Vx 

0 1.000000 0.0 0.99857 4 0.998574 
1 0.840237 0.504142 0.99 8574 1.980738 
2 0.705999 0.254100 0 .4 94432 1.945361 
3 0.593206 0.127539 0.240272 1.883904 
4 0.498434 0.06429 8 0.112733 1.753289 
5 0.418803 0.032248 0.048435 1.501962 
6 0.351894 0.016187 0.016187 0.999993 

Table 6.4: Calculating Fisher's Reproductive Value 
Data taken from cohort schedule in Table 3.4- The value of>- used is 1.19014. All numbers 
were truncated at accuracy level shown. 

One procedure for estimating rep roductiv e value is to set the value of a zero year 
old at 1. Then , for seasonal breeders, reproductiv e values for the remainder of t he age 
classes are relative to 1, and are given by 

(6 .52) 

where Vx is the reproductive value of an x year old, relative to Vo = 1. The procedure for 
calculating reproductive values is shown in Table 6.4. Subject to some rounding errors , 
the Vx column in Table 6.4 shows a reproductiv e value of about 1 for the zero a.ge group, 
1.98 for the one year olds and so on. 

Knowledge of reproductive value can have important a.pplications. If a goal is to 
control overpopulation, females of higher reproductive values might be removed. 
Conversely , one should leave such females if goals involve optimizing or maximizing 
production. In restocking or introduction programs where population success is the goal, 
females of high reproductive value should be well-represented in the translocated 
population. Similar applications of reproductive value to plant populations do not work 
as well, since older age classes of perennial pla .nts do not tran slocate very well . 
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Chapter 7 

Assumptions and Population 
Projections 

The chapters on Natality, Survival, a.nd Elementary Population Projections (Chapters 2, 
3, and 4) were presumptuous enough to show the algebraic manipulation of natality and 
survival data without specific reference to the quality of the data or to the explicit 
assumptions that restrict the scope of inference available. The principal purpose for 
constructing a life schedule is to estima.te patterns of mort.aJity in study populations. 
Given natality data, it is further possible to develop projections of population responses 
such as growth, demographic transition patterns, or responses to hypothetical 
perturbations. If the data are collected properly and meet the required assumptions this 
goal is attainable. The opposite conclusion is equally true; if the data are not appropriate, 
then no a.mount of manipulation will retrieve the "truth" in the sense of proper 
estimations of parametric values. In the absence of a stationary a.ge distribution, the only 
way to obtain a true estimate of survival is to analyze time-dynamic ( i.e. Cohort) data. 
Given only a single sample from a population, it is not possible to detect a stationary age 
distribution even if such an unlikely event were to occur. In spite of the fact that life-table 
analyses are commonly produced on age-structure data taken from a time-specific sample 
of a population, this procedure is subject to particularly restrictive assumptions, and it is 
easily demonstrated that the resultant estimates may well be grossly erroneous. 

For example, note the considerable differences between the expanded life tables 
shown in Tables 3.3 and 3.4 . The true picture of what occurs in the population 
projection in Table 4.8 is reflected by the Cohort analysis shown in Table 3.4. That is, the 
survival values from which Table 1.8 was generated are retrieved only by the Cohort 
analysis conducted and shown in Table 3.4. The time-specific analysis of Table 4.8 is 
shown in Table 3.3. Clearly, these arc diff crcnt versions of the same population. The 
time-dynamic vs. time-specific analyses produce different results. The same thing would 
be true if such a comparative analysis were to be conducted on the declining population 
shown in Table 4.6. 

In a growing population, for example Table 4.8 a tirnP.-specific analysis will 
underestimate true survival. In a declining population, for example Table 4.6, a 
time-specific analysis will overestimate true survival. Only in the case where the 
population is at Stationary Age Distribution will a time-specific analysis retrieve the true 
survival schedule, as properly revealed by a time-dynamic analysis. In a time-specific 

3.5 
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analysis, the extent to which sur vival scltc<lulcs arc undere stimated (in a growing 
population), or overestimated (in a declining population) depends on the distance these 
growth ra t es are from Station ary Age Dis t ribution. As >. diverges from 1 in either 
direction, the amount of bias in surviv al estimates increases accordingly . A time-dynamic 
(or diagonal or cohort ) analy sis will always estimate the true survival rates of the 
population. 

The message is a simple one: if you require accurate estimates of survival, design 
the experimental procedures such that a full cohort may be followed. Note however, that 
the worth of the survival estimates also depends on sampling design and intensity. Simply 
following individuals in the population through time is necessary but not sufficient for 
good estimates. If you are able to follow all individuals in a population through time, and 
thus obtain survival data without sampling error, these equations will work for estimating 
survival schedules. However, if as will more typically be the case, you are sampling from a 
population, estimating survival is even more difficult, and you will want to use one of the 
capture-recapture algorithms (such as those modified from the Jolly methods) for 
estimating population parameters. 

If you cannot, or choose not to follow the dictates of this assumption of Stationary 
Age Distribution, you must be particularly cautious in interpreting the results. In 
Chapter 10, I have described a modelling approach that amounts to a statistical 
reconstruction of the population history. The approach is clearly not entirely adequate. 
However, in cases where the gaining of some understanding is essential , you may well be 
left with little choice. The object then, is to make the best use of what data you do have, 
with full recognition of the pitfalls involved. 

The basic population projection algorithm described in Chapter 4 reduces to the 
commonly seen exponential growth equation 

as described in Chapter 6. 

dN = rN 
dt 

(7.1) 

The simple addition of a density -dependent "<lamping " function, to the right hand 
side produces the familiar Lotka-Volterra equation for population growth 

dN _ (J( - N) 
dt - rN J( 

This equation, typically referred to as the "logistic equation ," is further discussed in 
Chapter 12. 

(7.2) 

The basic equation shown in Chapter G and again as Equation 7.1 above can be 
converted to an iterative form by integrating to give 

(7.3) 

The expansion of Equation 7 .3 to include age structure then led to an additional 
series of equations shown in Chapter 4. Th ese were the natality projection (leaving aside 
the decomposition of mx for the moment) 

w 

no,t = ~ nx,tffix 

x=l 

(7.4) 
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and the survival projection 

nx+l ,t+l = nx,tPx (7 .5) 

Equations 7.4 and 7.5 thus form an elementary population projection model that has 
relatively low sophistication, but is useful as a pedagogical tool and for its' ability to be 
expanded into a real population projection algorithm. This elementary population model 
also provides a focal point for discussions concerning assumptions in population models. 

One reasonable approach to the craft of model building is to start with a basic 
model structure, detail the various assumptions, ( explicit ones are easy, implicit ones may 
be subtle and difficult), and then construct a model structure that allows relaxation of 
those assumptions you are interested in evaluating. 

As described in Chapter 1, there are 4 primary population parameters, natality, 
mortality, immigration, and emigration. In Equation 7.1 the population model is about as 
fundamental as such things ·can get, and only abundance (N) and an instantaneous rate 
of increase ( r) are included as parameters. The rate of increase can be any of the several 
described in Chapter 4, and you must know which in order to make proper use of the 
model for interpreting population mechanisms . In Equations 7.4 and 7.5, the addition of 
age structure leads to the basic projection model that includes only natality, survival, age, 
and time. Biologically these are necessary parameters for describing population processes. 
However, these attributes are not sufficient to describe the complex demographic patterns 
that species exhibit. The following assumptions limit the applicability of this basic model, 
and detract from the biological inferences and realism of resulting simulations. 

1. The population is closed with respect to immigration and emigration; therefore 
abundance can only be changed through natality and mortality. 

2. Natality ( mx) and survival rates (Px) are constant across time, and are therefore 
independent of changes in population abundance or in the environD?-ent. 

3. The inclusion of only females in the population model implies that there is no 
shortage of males for mating, that production of felrnales and males is equal (i.e. 
the proportion of males across all age classes is 0.5 and constant), and and survival 
rates are equal for both sexes across all age classes. 

4. The size of the a.ge classes x to x + 1 must be equal for all x, and must also be equal 
to the time intervals t to t + 1. This imposes a restriction on the number of age 
classes used to describe the population since the age classes must be small enough 
to permit a transition into a subsequent a.ge class (e .g. 5 year intervals for a species 
with a 5 day life expectancy will not work). Also, in general, time intervals must be 
large enough to permit only one reprodu ctive effort . (In this instance, it is possible 
to pool across multiple reproducti\'c period s, with subsequent loss of resolution). 

5. All individuals within an age class are qualitativ ely identical; this means that they 
are behaviorally, genetically, and physiologically the same. 

6. All females in the population reproduce according to the mx schedule during each 
time interval; further, the mx schedule is constant. 

7. Response of the population structure is instantaneous; there are no time lags and no 
asymptotic limits. 
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8. Population parameters are constant over time and independent of abundance and 
environment (assumption No. 2 above); population growth is therefore deterministic 
and exponential. 

One goal in writing a population model might be to develop a model structure that 
incorporates functional relationships such as those in the above list of assumptions. The 
model thus becomes more able to reflect real population biology. Adding such detail has 
the concommitant effect of requiring ever more data from the real population, and such 
data are quite difficult to obtain. Thus the trade-off is between abstraction and reality, 
with the deciding factor being availabiltiy of information on the real population, and your 
intent in conducting the modelling exercise in the first place. 
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Chapter 8 

Modelling Complex Population 
Dynamics 

Making a population model more realistic, therefore more complex, involves envisioning 
the biological phenomena to be described, and writing mathematical structures that 
produce the desired results. The basic model described in Chapter 4 serves as a 
foundation. By successive relaxation of assumptions of interest (see Chapter 7), and by 
incorporating such other phenomena as you wish to study, a model for computing 
population projections emerges. The computational model is no more than a complex 
calculator condu .cting its' work according to a specified "algorithm." An algorithm is 
simply a computational solution to a particular mathematical structure. The model is a 
computing device that reflects your perception of how the demographic machinery of a 
population operates. 

A philosophy for appropriate use of computer simulation models is discussed more 
fully in Chapter 10. The purpose of this cha.pt.er is to describe the mathematical structure 
of a particular algorithm as an example of how such models are developed. This algorithm 
follows a mathematical model that calculates population projections as described in 
Chapter 4, with consideration of many of the assumptions as described in Chapter 7. 

This algorithm was designed and written to provide insight into the demographic 
machinery of exploited populations. The program deals with populations that: 

1. are bisexual (therefore have sex-specific attributes); 

2. have extended life spans with overlapping generations (therefore have age-specific 
attributes); 

3. are iteroparous (therefore have complex reproductive attributes); 

4. are wholly exploitable (therefore have complex mortality attributes); and 

5. a.re variable through time (therefore possessing complex temporal functions related 
to 1) through 4) above. 

Assumptions that currently constrain the model are: 

1. it is independent of abundance and environmental specifics; 

39 
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2. the size of the a.ge classes x to x + l must be equally divisible into a reproductive 
"season" and a non-reproductive season; 

40 

3. the additive mortality prescribed influences only the non-reproductive season (this 
corresponds to "winter" mortality, hunting , etc .); 

4. the span of time, t to t + l must be equally divisible into two "seasons," and t to 
t + l is equal to x to x + l; 

5. the model is deterministic; 

6. the model la.cks specific time lags (hypothesized time lags may be incorporated). 

The coded version of this model is modular, with the practical result that constraint 
assumptions 1, 5, and 6 above can be readily relaxed by writing specific functional 
relations. Doing so requires species- and site-specific data (especially for assumptions 1 
and 6), as well as uniquely hypothesized functional relations for attributes of concern. 
(SUBROUTINE DRIVE2, called by SUBROUTINE DRIVEl is provided for these purposes). 

Hunt 1 categories are age- and sex-specific; the maximum complexity possible is for 
each sex and age cell to equal 1 hunt category. Conversely, hunt categories can be pooled 
across ages. Sexes cannot be pooled (although they can be harvested similarly if one so 
chooses). Within a hunt category that contains pooled ages, individuals are removed 
proportional to their abundance in each age class. 

Sex ratios at birth are obtained from clutch size data Ftx and sex ratio at birth 
data , SEX RATx , thus producing age-specific expectations for both females and males 
(females only are assumed to do the "producing," males contribute sperm subject to 
constraints described below). 

Thus, preliminarily 
F(x,i) = F'(x)SEXRAT(x) (8.1) 

where Fx,i is expected sex-specific clutch size, x is age, and i = 1 = females, i = 2 = 
males . Specifically, 

(8.2) 

and 
(8.3) 

Sex-specificity in a model implies copulation ratios as well as other attributes. The 
usual implicit assumption is that sufficient adequate males are available so that copulation 
intensity is not reduced as a function of lack of capable males. However, real populations 
may well experience depression in potential rates of increase because of too few males . 
Thus, given minimum ages for participation in copulation for both females and males, and 
given a Critical Breeding Sex Ratio, CBS R, th~t is, the minimum ratio of males required 
for full fertilization of females who choose to participate, it is possible to modify breeding 

1 It is to be reemphasized that this model can deal with any abstraction that involves additive mortality. 
Thus, "hunt" is simply a euphemism for any hypothesized mortality agent, and might include such processes 
as competition, predation, accidents, and so forth. The decision concerning whether these processes are 
actually additive requires further information from the population in question . 
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proportions, /Jx, accordingly. Com pa.re the Opera.ting Sex Ra.tio, 0 SR ( the sex ra.tio of 
copula.ting a.d ults at the onset of the insemination period) to CBS R, and if 
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OSR < CBSR (8.4) 

then breeding populations of females is reduced by 

and per capita age specific expectation of offspring is given by 

Mx,i,t = Fx,i,t/Jx,tOSR 

These preliminary computations are made prior to each inseminating period. 

(8.5) 

(8.6) 

Given these results and a survival schedule (Px) from previously available data, 
projections from "Fall" (the insemina ,tion period) to ''Spring" (the period where 
reproduction is a demographic reality and offspring are actually produced) follow from 

and 

w 

no · - ""n m · ,i,t - L._, x,1,t X,t 

l,i,t 

n · 5-n · ~p x+.5,t,t+. - x,1,ty J-'x 

(8.7) 

(8.8) 

For Spring, and a preliminary mortality (i.e. "ambient" mortality - that without 
any added harvest), for projection into Fall we use: 

n · -n · s~P x+l,t,t+l - x+.5,t,t+. y J-'X (8.9) 

Note that Px is the probability of survival across a whole age class, and thus ,Ip; 
gives probability of survival across a half age class. Natality and mortality occur in the 
Spring, mortality only occurs in the Fall. 

Given a tentative Fall projection of population structure, a choice is available of 
whether or not to impose an additive mortality schedule, if not, the model proceeds to 
options of changing primary population attributes, Fx, Px, /Jx, Px, and thence into further 
projections. 

Harvesting is imposed on the Fall population, according to the Hunt Categories 
described above, and a stated level of additional mortality per sex and hunt category. 
Given the total number of individuals to be removed during a hunt sequence, the sum 
across ages within sex and hunt category, and the proportions by sex and hunt category 
that are to be removed, a loop is generated across ages within sex and hunt categories and 
an appropriate number of individuals is removed from the previously generated 
Tentative Fall Population . This manipulation is: 

nx,il = nx,i - ((nx,;/S)(PROPx,iTOTKIL)) (8.10) 

The element nx,;/ S, S being the sum mentionea above, is the proportion of each age 
class within the hunt category to which the age class was assigned. P ROPx,i is the 
specified proportion of individuals to be removed from a sex and hunt category. P ROPx,i 
values are identical for all age classes within a single hunt category. The value 
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P ROPx,iTOT KIL is the number of individuals to be removed from a hunt category. 
Multiplying this by the proportion of an age class within a hunt category, i.e. nx,i/ S, 
produces the number of individuals to be removed from an age class. This removal is thus 
scaled to the proportion of that age class within the hunt category. 

A schematic of these relationships, natality plus mortality (Spring), ambient 
mortality only (Fall), additive mortality if requested (Fall), is shown in Figure 8.1. The 
mathematical structur e of this model is relatively straightforward. Much of the 
complexity of the coded version stems from input/output requirements and staging of 
program integrity and fail-safe mechanisms. 

It is instructive to conduct comparative analyses on data from a simulation model 
where you know the answers (in the sense of the parameters that were used to initialize 
and drive the simulation). Ths program computes life history and survival analyses 
following Chapter '3 on any of the Fall population structures. The internal mechanism for 
these analyses is a History matrix within the model that stores population structure for 
each spring and fall population. This matrix is of such a size that a full diagonal cohort 
occupies the cells , and thus , once this matrix is filled, cohort ( the principle diagonal on 
the history matrix) analyses are available. 

These life-history analyses are conducted on females, males , and both sexes. There 
are several obvious theoretical problems in so doing, nonetheless, the results are intriguing, 
and worth contemplating. Interpreting these results is described further in Chapter 10. 
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Chapter 10 

A Philosophy of Model U se 

10.1 A Philosophy of Using What You Have 

Good data are never very easy to obtain. In the case of demographic analyses of wild 
populations this is particularly true . If , however, one were to wait for totally proper and 
adequate data before attempting a demogra .phic analysis, none would ever get done. 
Further, ma.na.ging wild populations (in contrast to simply writing scholarly papers about 
them) often times requires that decisions be made whether or not adequate data exist. In 
such cases, you must make the best with what is available. 

The objective, then, might well be framed in the context of conducting the most 
rigorous analysis that your data allow, and then proceed into an interpretative analysis 
that is fully cognizant of the consequences of the failure of the data to meet various 
mathematical assumptions in the analysis and modelling of the population. This Chapter 
describes an approach to demographic analysis and interpretation that represents an 
attempt to get the best from what you have, while at the same time, incorporating 
relevant amounts of caution. 

Life history patterns of species differ in various ways, however, the basic theoretical 
considerations are common to all. Often, being interested in a part icular phenomenon 
rather than a particular species, a researcher can choose life history patterns that provide 
relevant examples and relative ease with which certain attributes may be measured. 

For example, clutch sizes and factors affecting them are well known for many birds 
( one has "only" to locate the nests and count eggs) , and for many mammals (placental 
scars, embryo counts, etc .). In contrast, clutch sizes are poorly known for many species 
reptiles, and for fish and amphib ians that scatter their eggs. As a result, an intensive 
study on the phenomenon of clutch sizes as a function of environment would be easier 
( not necessarily better) on such species as birds and mammals. 

Conversely, much is known regarding survival patterns of birds from hatching to 
fledgling, and almost nothing from fledgling through adu lt life. Banding returns are 
notoriously low in such species, and relevant statistical inferences, while indicat ive of 
trends, are complex, difficult, and produce generally large variances. For the same reasons, 
survival in bats is poorly understood . Animals that can be marked and trapped again and 
again provide excellent subject for survival studies. Here, small mammals excel, and large 
mammals with long life spans have tended to be generally poor subjects. Lizards, too, are 
amenable to survival studies (in some species clutch size analyses as well, while results 
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with most species of fish, amphibians, a,nd snakes have been disappointing at best. 
The pattern is clear, logically and mathematically correct survival analysis requires 

cohort data. That means data collected over time domains that include a large portion 
(minimally) of the maximum life span of the individuals being studied. This is, for 
economic reasons as well as biological, a generally difficult task that for many species, has 
produced less than satisfactory results. Either it is technically or logistically impossible to 
obtain the needed data ( e.g. many species of waterfowl), or the life-spans are such that 
the duration of the average research project is simply too short to produce good data. 

Management disciplines have extended age-structure analysis by examining 
harvested animals as they are brought through "check stations ." These data , thus 
represent time-specific images of population a.ge structure (problems of biased sampling 
and poor aging techniques aside). Because they represent data that superficially resemble 
cohort data, i.e. they both describe numbers of individuals per age class, they have long 
been utilized in life history analyses. Although the practice of gathering of this kind of 
data is quite common, proper analyses of such data are not common. 

Under the argument that being able to determine the age of individuals from any 
given population is important, a large and diverse literature has developed over the past 
100 or so years. The premise goes like this: age structure analysis will reveal survival 
patterns (using the algebraic procedures described in Cha,pter 3), therefore, it is 
important to know how to age animal species, and it is important to collect such data as 
ages of individuals in selected populations. Thus has grown what can only be called the 
"aging industry" in population ecology. This effort is particularly true in applied ecology, 
but no less important in non-management oriented research. 

Various expressions of concern and advice to use caution on this matter have been 
produced in the past. However, the use and mis-use of aging data continues, often under a 
cloak of ignorance, and if not that, then under the contention that "it's better than 
nothing," or "we've got to do something ... " 

Careful examination of the projection tables shown in Chapter 4, the discussion of 
assumptions in Chapter 7, and the examples of survival schedule construction for 
time-specific vs. time -dynamic samples (Tables 3.3 and 3.4), show the effect of the critical 
assumption involved: populations must be at stationary age distribution for an accurate 
revelation of truth from time -specific data. 

As previously indicated, Stationary Age Distribution is a special case of Stable Age 
Distribution, and the only way population structure will reach a Stable Age Distribution 
is for survival, lx, and natality, mx, to remain constant. The time span required for these 
schedules to remain constant is at least as many years as the maximum life span of the 
species, and then a few more. The length of time required depends upon the accuracy of 
the estimate for Stable Age Distribution desired. 

For example, a simple functional definition of Stable Age Distribution can be 
devised through specification of an acceptable percentage deviation through time of 

At = >-t-1 = >.(t - 2), = ... = >-t-k (10.1) 

for k = perhaps one-fourth of the years involved in maximum age of the species being 
considered. This is not as good as checking for percentage deviation across each age and 
sex class proportion, Cx,i,t vs. Cx,i,t-l, etc., since any given constant >. does not uniquely 
define a given Stable Age Distribution . It does, however, serve as a test value for most 
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purposes. It is possible on a computer to require 6 or more decimal place accuracy, which 
would take a population many annual iterations to reach Stable Age Distribution; 
conversely, one might specify agreement at the 5% level and thus be working with a much 
more "loose" Stable Age Distribution. The requirements here depend upon the purpose 
the analysis is intended to serve. 

\\That then should one do? The answer seems to depend on the relative importance 
to be attached to any predictions or recommendations derived from a demographic 
analysis, and the urgency attached to the "we have to do something now" problem. 

An experienced demographer can extract useful information out of poor data. 
Various techniques exist for manipulating survival data so that some information can be 
retrieved. The goal might well be one of excluding certain potentials rather than seeking a 
single truth. It is in the establishment and definition of population response potentials 
that the models described in this manual are designed to help. 

Conducting a demographic analysis in this manner allows a careful researcher to 
seek pla.usible scenarios within the ava.ilable data. Extremes in population response 
potentials may thus be accorded low probabilities of occurrence, or excluded entirely. 
Plausible events may be defined and further evaluated, including information that is 
relevant but generally external ( e.g. abundance or shortage, good year-bad year 
sequences, etc.) to demographic analyses as described in this manual. 

Given a suitably imaginati ~e approach, and well seasoned with caution and 
responsibility, considerable understanding can be gained that can change a wild ass guess 
into an informed decision. It is the goal and approach of this manual to demonstrate this 
philosophy. 

10.2 Reconstructing a Population History 
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Life Table Calculations 

A.I Columns in an Expanded Life Table 

Program lifehist computes an expanded life table as described in the discussion on 
analysis of survival data (Cha .pter 3). Columns produced are as follows. 

If natality data, mx, are provided, the program produces columns that are described 
in Chapter 6. The notation for these columns is as follows. 

Additional derived attributes are denoted as follows: 

A.2 Computing an Expanded Life Table 

To begin execution of program lifehist enter 

lifehist 

The program will prompt for information as follows: 

enter title of lifetable 

which is a request for up to 72 columns of alphameric characters that identify the data 
set. This is followed by: 

x Age class 

nx Number of individuals in the x to x + l a,ge class 

lx Probability of survival from age O to age x 

dx Probability at age O of death during the interval x to x + l 
qx Age-specific mortality 

Px Age-specific survival 

Lx Animal units to be lived during the interval x to x + l 
Tx Animal units to be lived during the interval x tow 

ex Life expectancy from age x 

Px Age specific survival following Leslie (1945) 

Table A.1: Expanded Life Table for Survival Data 

47 



APPENDIX A. LIFE TABLE CALCULATIONS 

mx Natali ty (Sex-specific expected production of offspring) 

lxmx Age-specific expected reproduction value 
Vx Fisher 's reproductive value 

Cx Stable a.ge distribution 

GRR 

Ro 
T 

Tc 
T 
,\ 

T 

Table A.2: Expanded Life Table for Natality Data 

Gross Reproductive Rate 

Net rate of increase 

Generation time according to Lotka and Sharpe 

Generation time according to Laughlin 

Generation time according to Leslie 

Finite ra.te of increase 
Instantaneous rate of increase 

Table A.3: Derived Variables in an Expanded Life Table 

enter number of age classes 

enter an integer that is less than or equal to 60 age classes . 

48 

Survival data may be entered in either of 2 forms: {i) an age structure column, nx; 
or {i) as an already computed survival schedule , lx . Survival schedules are equally 
applicable to either males or females, and if survival analysis is what is required, either of 
these forms of input are appropriate. 

If, in addition, computation of the attributes that require natality are desired, two 
data forms are available: {i) survival data as nx with natality data mx; or (i) survival data 
as lx with natality data mx, If these latter 2 options are used, the nx or lx data typically 
refers to females. (Note that it is possible to conduct such calculations on males with an 
interesting twist in interpretation of life history a.ttributes.) The program prompt is: 

WRITE FORM OF DATA 
1 = NX W/0 MX 
2 = LX W/0 MX 
3 = NX W/ MX 
4 = LX W/ MX 

Enter the number, 1 through 4, that corresponds to the form of data to be used. 
Program lifehist ca.n conduct some internal comutations in various ways. Several 

of the columns in the expand ed life table require that some estimate of areas under the lx 
curve be obtained. As shown in Chapter 3, these can either be approximated by assuming 
linearity between points, or be conducting a numerical integration of the lx curve to 
obtaining the data elements in Lx (which are subsequently used in other columns) . This 
computation involves a ''spline fit;" that is, it fits a cubic equation to each interval 
between data points on lx under the restriction that the deri vatives at the data points are 
zero . This procedure works very well for complex l(x) schedules. For more simple survival 
schedules, i.e. "smooth er" curves that app ear to be straight across adjacent points, the 
linear approximation for Lx is preferred. lifehist prompts for your choice as follows: 
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enter 1 for linear approximation 
2 for numerical integration by cubic spline fit 

Enter either a 1 or a 2 for this request. 
Subsequent prompts depend upon the form of data requested previously. lifehist 

will prompt: 

enter n(x) data 

or 

enter l(x) data 

and if you have natality data as indicated by previous entry of data form 3 or 4: 

write m(x) data 

The program is designed so that you can enter data in "free format." You may 
enter data with elements separated by at least 1 space, or you may enter your data 
elements separately, entering a RET after each one. In the latter case, the program will 
continue to read these data elements until you have entered the entire schedule . 

Following successful entry of the survival data and natality data if you requested 
this option, the program will compute and print an expanded life table as described 
above, and in Chapter 3, including the list of derived variables if you entered some 
natality data. If you requested the numerical integration the program will print some 
internal variables for the cubic equations from the spline fit so that you may check the fit. 

Following the printing of the expanded life table, you will have the opportunity to 
recycle and enter another data set, or leave the program. The prompt is: 

do you want another lifetable (yes or no) 

Entering a yes will take you to the top of the program as described above. Entering 
a no will initiate program termination. 

The results from your computations are written to a file in your working directory 
called lifehist .rslt. If you requested multiple tables, each is successively appended to 
this file, and each will be identified by the title of the data set requested when you began 
data entry for a particular run. 

An actual report from program lifehist looks like this: 

Summary of Life History Information for test 
JOB NUMBER 1 
x n(x) l(x) d(x) q(x) p(x) L(x) T(x) 

0 100.000 1.00000 0.10000 0.10000 0.90000 0.95000 
1 90.000 0.90000 0.10000 0.11111 0.88889 0.85000 
2 80.000 0.80000 0.10000 0.12500 0.87500 0.75000 
3 70.000 0.70000 0.70000 1.00000 0.00000 0.35000 

x e(x) P(x) m(x) l(x)m(x) v(x) c(x) 
0 2.9000 0.89474 2.00000 2.00000 1.00000 0.76104 
1 2.1667 0.88235 3.00000 2.70000 4.12654 0.18442 
2 1.3750 0.46667 4.00000 3.20000 4.70681 0.04414 

2.9000 
1.9500 
1.1000 
0.3500 
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3 0.5000 0.00000 3.00000 2.10000 3.00000 0.01040 
GRR Ro T Tc Tbar lambda 

12.00000 10.00000 1.75491 1.54000 1.31399 3.71388 

Summary of Life History Information for test2 
JOB NUMBER 2 
SPLINE DUMP FOR test2 

r 

1. 31207 

Y(I) = 1.000000 0.900000 0.800000 0.700000 0.600000 0.000000 
X(I) = 1.000000 2.000000 3.000000 4.000000 5.000000 6.000000 
DERIVATIVES AT THE KNOTS ARE 

-0.102392 -0.095215 -0.116746 -0.037799 -0.332057 -0.733971 
CUBICS ON INTERVALS ARE 

I= 1XCUBE* 0.23923e-02+ XSQR*-0.71774e-02+ X*-0.95214e-01+ 0.11000e+01 
I= 2XCUBE*-0.11966e-01+ XSQR* 0.789470-01+ X*-0.26746e+OO+ 0.12148e+01 
I= 3XCUBE* 0.45454e - 01+ XSQR*-0.43780e+OO+ X* 0.12827e+01+ -0.33540e+OO 
I= 4XCUBE*-0.16985e+OO+ XSQR* 0.21459e+01+ X*-0.90521e+01+ 0.13444e+02 
I= 5XCUBE* 0.13397e+OO+ XSOR*-0.24114e+01+ X* 0.13734e+02+ -0.24533e+02 

0.9494 1.0506 2.0000 
0.8518 
0.7434 
0.6745 

2.0574 
1.7465 

16.2699 

2.9092 
2.4899 

16.9444 
0.3335 -30.5287 -30.1952 

x n(x) l(x) d(x) q(x) p(x) L(x) T(x) 
0 0.000 1.00000 0.10000 0.10000 0.90000 0.94940 3.5526 
1 0.000 0.90000 0.10000 0.11111 0.88889 0.85179 2.6032 
2 0.000 0.80000 0.10000 0.12500 0.87500 0.74342 1.7515 
3 0.000 0.70000 0.10000 0.14286 0.85714 0.67454 1.0080 
4 0.000 0.60000 0.60000 1.00000 0.00000 0.33350 0.3335 

x e(x) P(x) m(x) l(x)m(x) v(x) c(x) 
0 3.5526 0.89718 2.00000 2.00000 1.00000 0.76584 
1 2.8925 0.87278 3.00000 2.70000 4.24493 0.18041 
2 2.1893 0.90735 4.00000 3.20000 5.35070 0.04198 
3 1.4400 0.49441 5.00000 3.50000 5.89743 0.00961 
4 0.5558 0.00000 4.00000 2.40000 4.00000 0.00216 

GRR Ro T Tc Tbar 
18.00000 13.79999 1.95817 2.11594 1.37857 

lambda 
3.8204343 

r 
1.34036 
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Survival Estimates from 
Regression Analysis 

Program survive computes a loge transformed n x against x linear regression analysis and 
provides estimat es of instantaneous and annual survival rates as described in Chapter 3. 
The program produces about a half -page of printout for each analysis. 

Initiate execution of program survive by entering; 

survive 

You will be prompted for the following information: 

enter identification for current data set 

This is a reque st for up to 72 columns of alphameric characters that identify the data set 
you are about to enter. 

enter maximum age of Fall individuals 

is the next request. Note that the request is for Fall aged individuals, for most vertebrate 
species where production of offspring occurs in the Spring or Summer, Fall ages are 
fractional, such as 4.5. Program survive responds by printing an echo of your Fall age, 
and a computation of total numb er of age classes as follows: 

maximum age= n no. age classes= rnrnm: 

where nnn and mmm are ages corresponding to the above discussion. 
Program survive next prints a request for the fall nx data: 

enter n(x) vector for Fall individuals 

The program reads data in "free format" and you need only to put a space between 
data elements for separation. Alternatively, you may enter a single data element at a time 
and the program will iterate until you have entered the last value. 

After entering the se data , Program Survive echos your input, runs the 
computations , and reports the results. This information is written to the screen, and also 
into a file in your working directory named survive.rslt. 

Various intermediate statistics are reported to facilitate further statistical analyses 
(comparison of two survival estimates, for example). 

Following the analysis report, Program Survive will prompt you with: 
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enter ''yes'' for another run, or ''exit'': 

Entering an exit here will terminate program execution, a yes response will recycle 
the program, and you ma,y proceed with data entry as described above . If you request 
more than a single run, successive results are appended to the file named survive. rsl t. 

An actual report from program survive looks -like this: 

Enter identification for current data set: 

test 

Enter maximum age for fall individuals: 
Maximum age= 3.5: No. age classes= 4: 

Enter n(x) vector for 
n(x) = 100.0 80.0 
x(x) = 0.5 1.5 

Fall individuals: 
60.0 40.0 

2.5 3.5 

xmean 
ymean 
sum of x squared 
sum of y squared 
sum of cross products 

Explained mean square 
Unexplained mean square 
Mean square error 

= 
= 
= 
= 
= 

= 

= 
= 

2.0000 
4.1926 
5.0000 
0.4695 

-1.5183 

0.4610 
0.0085 
0.0291 

Attribute estimates and 951/, confidence limits: 

Instantaneous survival rate 
Annual survival rate 
Annual mortality rate 

= -0.30 

= 0.74 
= 0.26 

(-0.18 -
( 0.65 -
( 0. 16 -

Fat 1 and 2 df = 108.894 for test on slope. 

Estimated n(x) vector back-calculated to age 0: 

X n(x) 
--------

0 121.5 
1 89.7 
2 66.2 
3 48.9 

Enter "yes" for another run, or "exit": 

-0.43) 
0.84) 
0.35) 
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Reply = n 

( 



Appendix C 

Computing Elementary 
Population Projections 

PROGRAM DUMPOP requires entry of basic population information. As execution 
begins, you will see 

Population Projection Model: Ver. 2.2, 15 Sep 88 
An NMSU Science Workbench Program 

Enter identification for current data set: 

The identification line is 72 columns of information that will be used to label your reports 
for each simulation. Note that the program will echo all of your entered data. Everything 
you see on the screen is also being written to a file in your working directory called 
dumpop. rsl t which you can save and look at when you choose. 

The program than requests initializing information beginning with: 

enter number of age classes 

This value contains the zero age class through the oldest age class, inclusive. For example, 
if the oldest animals are 9 years of age, the number of age classes is 10 (0 - 9). The 
program handles up to 24 age classes. 

You will then be requested to enter the initial number of individuals per age class. 
This set of input begins with 

enter NX 

to which you enter your a.ge structure data. Enter each age class with a space between age 
classes (you do not need to worry about sp eci fie columns or formats). 

The next program request is for selection of the type of survival data you wish to 
enter. The program will print 

survival form? enter <lx> or <px> 

Enter one or the other of these alternatives (either lx or px). Depending on your 
choice, the next prompt will request that you enter the survival data and looks like this: 

enter lx vector 
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( or px if you chose to enter age-specific survival). Enter the decimal point just as if you 
were writing the number on a sheet of paper, and put a blank space between the a.ge 
classes. 

After entering the survival data, you will be prompted to enter the fertility data. 
This looks like this: 

enter mx vector 

to which you enter the age-specific expection of daughter offspring as described in 
Chapter 2. 

vVhen the fertility data have been entered, the program produces an initializing 
summary of the population at time = 0, that is , the program will produce the state of 
the population following the initial information that you have entered. This summary lists 
the age class (left column), number of animals in each age class (middle column), and the 
proportion represented by each age class relative to the total population (right column). 

Below these columns is a summa .ry statement, 

total population size at t = 0 is xxxxx 

followed by a query concerning whether you want to continue the population projection to 
the next time step: 

iterate to t+1? enter <yes> or <no> 

If no is entered, the program will print a summary of population density and then 
quit. If you enter a yes the program will project the population to the next time step, 
and report the state of the population at that point. In addition, the program will report 
a finite (annual) growth rate, and an instantaneous growth rate, following the statement 
of total population size. Following this, the program will ask you if you want to "iterate 
to t+1" once again. 

You may iterate the projections up to 100 time steps. 
An actual report from a population simulation looks like this: 

Population Projection Model: Ver. 2.2, 15 sep 88 
An NMSU Science Workbench Program 

Enter identification for current data set: 

test 

enter number of age classes 
reply: 4 
enter NX 
reply: 100.00 90.00 80.00 70.00 
survival form? enter <lx> or <px> 
reply: lx 
enter lx vector 
reply: 0.80 0.70 0.60 0.50 
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enter mx vector 
reply: 0.00 2.00 3.00 2.00 

--------------------------------------------------
summary for time= 0 

age class number proportion 

0 100.0000 
1 90.0000 
2 80.0000 
3 70.0000 

total population size at t = 0 is 

iterate to t+1? enter <yes> or <no> 
reply: y 

0.294118 
0.264706 
0.235294 
0.205882 

340.0000 

--------------------------------------------------
summary for time= 1 

age class number proportion 

0 539.7619 
1 87.5000 
2 77.1429 
3 66.6667 

total population size at t = 1 is 

growth is 2.26785731 r is 

iterate to t+1? enter <yes> or <no> 
reply: ye 

0.700015 
0.113478 
0 .100046 
0.086460 

0.81883550 

771.0715 

-----------------------------------------------·---
summary for time= 2 



-· 

--.. 

APPE NDD( C. COMP UTIN G ELEM ENTA RY POP ULAT ION PROJEC TIONS 57 

age class number proportion 

0 1298. 1548 0.679758 
1 472 . 2917 0.247308 
2 75.0000 0.039273 
3 64.2857 0.033662 

total population size at t = 2 is 1909.7322 

growth is 2 .47672534 r is 0.90693724 

iterate to t+1? enter <yes> or <no> 
reply: no 

--------------------------------------------------
summary for time= 3 

age class number proportion 

0 3611.2354 0.692545 
1 1135 . 8855 0 . 217835 
2 404.8214 0.077635 
3 62.5000 0. 011986 

total population size at t = 3 is 

growth is 2.73045731 r is 1.00446916 

iterate to t+l? enter <yes> or <no> 
reply: n 

----------------------------------------

swrunary of projections 

t popsize lambda 

1 771.1 2.2678573 
2 1909.7 2.4767253 
3 5214.4 2.7304573 

5214 .4424 
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Appendix D 

Computing Complex Population 
Projections 

Program popmod computes population projections according to the mathematical 
framework described in Chapter 4, with extensions that include 2- sexes, seasonality, and 
selective mortality, as described in Chapter 8. 

This particular version of popmod simulates populations that have life-history 
attributes as follows in that they are: 

• relatively long lived and contain overlapping generations; 

• bisexual; 

• definable in the form of age-specific attributes; 

• seasonal in the sense that they breed during one definable period, and are 
reproductively inactive during a second, equal length period; 

• age definable such that these 2 periods are of equal length age intervals; 

• definable such that the 2 seasonal periods, thus the 2 age intervals, combine to form 
an analog to an "annual cycle" (note that "annual" need not be 1 year in real time, 
even though the program labels the listing according to Spring, Fall, and YEAR), 
the requirement here is repeatability of potential breeding followed by reproductive 
quiescence followed by potential breeding, ... etc.; 

• definable in the non-breeding, i.e. "Fall" period. 

All initialization occurs on "Fall" age individuals. That is, individuals that were 
produced in one of the previous "Spring" periods. Thus, Fall age structure contains 
individuals of half year ages while Spring contains only even year-old individuals. Details 
of program operation are as follows. 

The model begins with an initial request for basic information 

Program popmod: Version 3.1, May 87: 

Enter identification for this simulation run: 

58 
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and after you enter your identification data the program will echo your data . a.s follows: 

Simulation run identification header: 

Up to 72 columns of your identification information goes here ... 

Note that program popmod echos all of your replies back to the screen. The program 
also writes 2 additional reports of your simulation run. These reports are written into 
your working directory. The first of these is labeled popmod. rsl t 1 and is identical to the 
information that was written to your screen as you proceeded through the simulation run. 
The second report produced is named popmod. dump. The dump file contains all of the 
information written to the screen, as well as a large amount of internal data. These 
internal data consist of listings that either provide additional demographic information ( of 
more detail than you will typically want to know), or listings of internal calculations that 
can be used to verify that the program is calculating the values properly. Note that these 
2 files are opened at the beginning of each simulation run. If you want to save either file, 
you must rename it to prevent your previous simulation information from being destroyed. 

The files popmod. rsl t and particularly popmod. dump can get very large. The 
popmod. rsl t file can be used to reinitialize the program if you interrupt a simulation run. 
This allows you to continue on from where you quit the program earlier. Another use of 
the popmod. rsl t file is that you can edit this file ( carefully!.0, changing only certain of 
the demographic attributes that you want to vary. In this manner, you can conduct a 
series of "what if" simulations by manipulating individual values without having to go 
through the bother of keying the entire simulation again. Note that these changes are 
limited to the replies that you previously entered during a simulation run. Finally, this 
iteration scheme allows you to carefully work a simulation run to match up with analyses 
of real data that you have conducted independently of the simulation runs. This process, 
called "history reconstruction" is discussed further in Chapter 10. 

In order to make use of the results file, the program will question you as follows: 

Data from results file? answer (y/n): 

to which a yes answer will produce a. prompt that requests the name of the file that is to 
be read. Note that you must rename your previous popmod. rsl t file, thus eliminating the 
possibily that you will destroy your data unintentionally. Reading this file is treated 
exactly as if you were answering the questions from the keyboard, and you will see all of 
the results move across your screen as the simulation proceeds automatically. When you 
get to the end of the file, the program switches back to the keyboard queries as if you had 
entered all of that data by hand. 

If you do not want to read data derived from a previous simulation, a no answer 
causes the program to proceed to obtain the initializing information as described below. 

First popmod requests the a.ge of the oldest animals in the population based upon 
Fall observations. Since animals are born in the Spring, Fall ages will always be 0.5, 1.5, 
2.5, ... , thus the age entered must follow this pattern. The value chosen may be taken 
from results of a previous hunt (i.e. the oldest animal harvested) or other available 
information. Note that the greatest age value accepted by the model is 19.5. This query 
takes the form: 

1 Note that on MS-DOS systems the suffixes are truncated to 3 characters because of the naming con­
ventions imposed. 
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Enter the maximum age of animals (in the Fall) 
<= 19.5, Fall ages are X.S years 

60 

The next set of requests seeks specification of hunt categories 2 - which are groups 
of age classes that will be harvested according to specified groupings. These are most 
appropriately based upon the general groups of age classes which can be identified by the 
mortality a.gent (hunter, predator, disease agent, etc.) in the field - for example, young 
(0.5), immature (1.5), and mature (2.5-9.5). 

Since hunt categories are sex and age specific, in this case there would be 6 hunt 
categories: young females, young males, immature females, immature males, mature 
females, and mature males. A hunt category can contain only a single age class. Use this 
if it is anticipated that a particular age class could be harvested at a level different from 
its representation in the population. If harvesting is to be relatively random with little or 
no age discrimination by the hunter, then two hunt categories might be specified: females 
(0.5- 9.5) and males (0.5-9.5). In this case, when removal levels are specified later in the 
program, animals will be removed in relation to their proportional representation by age 
class in the population. You are asked to enter the youngest age and oldest age (by sex) 
for each hunt category. Since hunting is conducted in the Fall (i.e. the non-breeding 
season), the ages entered must reflect Fall ages (0.5, 1.5, 2.5, ... ). The -two ages entered for 
each hunt category must be separated by a blank. Female hunt categories are established 
first with: · 

In the folloiling query, if a hunt category is to 
contain animals of only 1 age, enter that age tilice 

Enter the youngest age and the oldest age for 
females hunt category 1 

If the request was for more than one hunt category in the females, the program 
repeats: 

Enter the youngest age and the oldest age for 
females hunt category 2 

Continue to specify a,ges until you have reached the oldest age previously defined. 
\Vhen the oldest age class entered for a hunt category is equal to that specified as 
maximum a,ge in the population, the query repeats for male categories, 

Enter the youngest age and the oldest age for 
males hunt category 1 

and if the request was for more than 1 hunt category in the males, 

Enter the youngest age and the oldest age for 
males hunt category 2 

2 Note that throughout, "hunt" and "harvest", are used to label any form of additive mortality, and thus, 
includes "predation" , "disease", "sport hunting", "commercial hunting", "competition dictated mortality", 
etc. 
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and continues until the oldest age class has been reached for males. Note that there is no 
requirement that female and male hunt categories be defined similarly. 

This feature of the model has wide flexibility; male hunt categories can be specified 
with different a,ge class groupings than those set for females. Any number of categories 
may be specified per sex, up to maximum specified age +0.5. For example, if maximum 
age is 5.5, up to 6 hunt categories can be specified for each or either sex, with each 
category containing a single age class. This might be used if each age class were in fact 
distinguishable to the hunter and thus could be harvested at an age-specific level. 

In order to be able to calculate minimum breeding sex ratios, the program requires 
entry of the maximum number of females which can be inseminated by a single male 
under natural conditions. Thus, under some mortality conditions, the number of mature 
males could be reduced to a level such tha.t there would not be enough males to 
inseminate all of the mature females in the population. At this point, the population 
growth would be reduced because of a decrease in the f3x, the percent of females breeding. 
The value entered in response to this request establishes a critical male:female breeding 
ratio threshold. \Vhen the number of males Falls below this level, an adjustment is 
automatically made in the f3x values and a report is issued that describes the new, 
reduced, f3x and thus mx values. The program request is, 

Enter the nwnber of females that can be bred by a male 

Next, the program requests specification of the youngest age at which animals can 
successfully copulate. Enter a value for females, followed by a blank, then a value for 
males. 

Enter age at first copulation for females, then 
for males (breeding occurs in the Fall) 

Copulation behavior occurs in the Fall, thus these values must reflect Fall ages 
(0 .5, 1.5, ... ). For example, a 0.5 entered for females indicates that it is possible for 
females born in the Spring to copulate sometime during the Fall or early winter, and to 
bear young as yearlings. Note that this parameter only sets up the potential for breeding. 
The actual frequency of this reproductive activity is determined by the f3x parameters 
( entered later) so enter the youngest ages for which there is any evidence for such 
rep rod ucti ve behavior . 

The program then requests 7 sets of age-specific data. All values for a given sex 
may be entered on a single line (separated by spaces), or individually; in which case, the 
program will prompt with a "?". The number of age-specific values required is the 
maximum age +0.5. For example, if maximum Fall age is 5.5, there are 6 age classes in 
the population (0.5-5.5) and 6 values are required for each set of age-specific attributes. If 
more than 6 values are entered, the program ignores the additional values; if fewer than 6 
values are entered, a system prompt will appear to indicate a need for entry of the 
additional values. Again, the program provides a "data echo" so that you can check for 
proper entry. 

The first request in this set is, 

Enter initial n(x,1) for females 

following your entries for the females, the request repeats for males, 
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Enter initial n(x,2) for males 

These nx values serve only to initialize the model population, and are not used to 
calculate survival information . They should reflect the initial Fall, post-hunt population. 

Age-specific clutch size is requested next. As described in Cha ,pter 2 on natality, 
this refers to the expected number of young ( total males and females) per breeding female 
in each age class. 

Enter age-specific clutch sizes, F(x) 

which will be modified by the expected proportion of males per clutch, Rx), entered as 
follows: 

Enter Age-Specific Proportion Males Per Clutch, r(x) 

The program then combines expected clutch size with the expected proportion of 
males per clutch, and reports sex- and age-specific clutch sizes. 

Expected sex-specific clutch sizes, f(x,i), for: 
Females 
Males 

For most organisms, the theoretical expectation for proportion of males produced 
per clutch is 0.5 for all age classes. In real populations, however, this is often not true. 
This procedure allows evidence for skewed sex ratios among newborn animals to be 
incorporated in the simulation. As iii the preceeding example, with 6 age classes, 6 values 
must be entered. This question appears only once, since only females produce offspring. 
Zero values should be entered for pre-copulation age females ( as determined by specified 
age at first breeding) to facilitate dear thinking, although any values entered in these age 
classes are automatically ignored by the program. 

The next request in the primary population attributes section provides for entry of 
proportion breeding, f3x, the proportion of females in each a.ge class that will actually 
produce offspring during the upcoming breeding season. This query is: 

Enter proportion breeding, b(x) 

Age-specific survival is requested first for females; 

Enter survival, p(x,1), for Females 

and then, the request repeats for males; 

Enter survival, p(x,1), for Males 

Following entry of the survival data, the program enters a generating phase and the 
previous information is used to project the initial population through to the first Spring 
and Fall seasons. The Spring projection appears first, a,nd shows ages, numbers, and 
proportions per age class for females, males, and combined sexes. Total numbers of 
females, males, and combined sexes are also reported. Note that ages reflect the Spring 
reproductive season; the O age class contains newborn animals and the older age classes 
contain those animals surviving from the initializing Fall through the Spring 
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reproductive period. All individuals are at this time at even year age intervals. The 
tentative Fall population projection follows immediately, appearing in a form identical to 
th e Spring report. Fall a.ge classes represent Fall ages, i.e. all are on half-year intervals, 
with the animals in each class being those surviving from the previous Spring. 

The report looks like this: 

Population statistics for Spring, year= 1 
AGE FEMALES MALES 

0.0 
1.0 
2.0 

TOTALS 

nx proportion nx proportion nx 

Tentative population statistics for Fall, year= 1 

BOTH SEXES 

proportion 

AGE FEMALES MALES BOTH SEXES 

0.5 
1.5 
2.5 

TOTALS 

nx proportion nx proportion nx proportion 

The projection through Spring (natality plus morta1ity) and into an unhunted Fall 
(mortality only) population utilizes the population attributes of clutch size, Fx,i, 
proportion males in clutch , Px, proportion females breeding, f3x, and survival probabilities, 
Px,i • The model assumes that the popula t ion is "closed," that is, there is no immigration 
or emigration ( or that these immigration and emigration are somehow factored into the 
natality and morta1ity functions respectively). Given this consideration, the model 
provides a "trials and errors" service. It is possibl e to set up a projection, run the model 
one time st ep , examine the results, and th en either continue on or back up 1 step, revise 
the above primary data, and re-project the population. These iterative revisions may 
continue until the desired result is obtain ed, whereupon the model is instructed to save 
the results , and proceed to the next stage. 

These "try and try again" iterations logically occur: 

1. after a projection from the Fall post-hunt population through SRING and into the 
Fall pre-hunt population; and 

2. after harvesting the Fall population. 

Thus , you as the operator have complete control over the population processes as 
dictated by the demographic mechanics , and you can attempt to match estimates from a 
real population with simil ar estimates from a hypothetical population. This procedure 
constitutes an attempt to reconstruct the history of the real world population. 
Surprisingly good results can be obtained if sufficiently long term data are available. 
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Program popmod will complete a. projection through Spring and into Fall, and then 
print: 

Satisfactory projection to Fall? 
(yes-no-exit) 

Entering an exit in response to this query and subsequent requests will cause 
immediate program termination. A no response will set the clock back to the previous 
Fall, and provide an opportunity to enter new primary values for clutch size, proportion 
males, proportion females breeding, and survival. The sequence is exactly as described 
above, and need not be repeated here. A yes response to this query leads to the hunt 
sequences. 

As described in Chapter 8, the program displays a "tentative" Fall population. This 
tentative population is projected without any effects of additive mortality. This is what 
the population a.ge and sex structure will be if no additional mortality is imposed. 

Assuming, for the moment, that no additive mortality is to be imposed a NO 
response is entered to the question, 

Hunt the tentative Fall population? (yes-no-exit) 

If there is to be no hunt (or following a. harvest cycle), there is an opportunity within 
each annual cycle, to change the previously established primary population attributes. 
Again, for the moment, assume that a no is entered in response to the question, 

Update primary population attributes? (yes-no-exit) 

in which case the program will produce the second iteration of projected population 
structure in the same form previously described, with the addition of sex-specific annual 
growth rates. 

Population statistics for Spring, year= 2 
AGE FEMALES MALES 

0.0 
1.0 
2.0 

TOTALS 

nx proportion nx proportion nx 

Tentative population statistics for Fall, year= 2 

BOTH SEXES 
proportion 

AGE FEMALES MALES BOTH SEXES 

0.5 
1.5 
2.5 

TOTALS 

nx proportion 

Annual growth rates 
Females= Males= 

nx proportion nx proportion 

Both sex= 
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Following each Fall projection, the program provides an opportunity to go back to 
the previous Fall and change the primary population attributes. In this example, we want 
to move on, and so have entered a yes to the question: 

Satisfactory projection to Fall? (yes-no-exit) 

The program will next request an answer to the previously shown hunting query. 

Hunt the tentative Fall population? (yes-no-exit) 

A yes response will generate the request: 

Enter total number of animals to be removed 
from the Fall population 

This additional mortality will be applied to the tentative Fall population which was 
shown just previously to provide guidance. Entry of more individuals than the population 
contains will generate a request to re-enter an appropriate value . The program next 
requests information on which sexes are to be harvested: 

Which sex or sexes are to be hunted? 
(enter: 1 = Females only, 2 = Males only, 
or 3 = both sexes) 

followed by a sequence of sex-specific questions where-by percentages of each sex and hunt 
category to be removed are specified along with a cumulative total of these percentages. 
Enter integ er values here , the program will do the conversions to proportions. The 
following example shows this sequenc e of questions with respect to 2 hunt categories for 
the females (ages 0.5 to 1.5, and 2.5 to maximum age of 4.5), being harvested at 20 and 
30 percent respectively. (Note that the question mark shown is a system -specific prompt): 

What percent of total kill is to be removed 
fr om Females ages 0.5 thru 1.5? 
(sum of percentages now equals 0 percent) 
? 

Reply: 
20 

What percent of total kill is to be removed 
from Females ages 2.5 thru 4.5? 
(sum of percentages now equals 20 percent) 
? 

Reply: 
30 

If similiar example values are applied to the males, the program will respond: 

What percent of total kill is to be removed 
from Males ages 0.5 thru 1.5? 
(sum of percentages now equals 50 percent) 
? 

Reply: 



,,.. 
' 

APPENDIX D. COMPUTING COMPLEX POPULATION PROJECTIONS 

20 
What percent of total kill is to be removed 
from Males ages 2.5 thru 4.5? 
(sum of percentages now equals 70 percent) 
? 

Reply: 
30 

66 

Ead1 of these hunt requests, for females, then males, automatically ceases when the 
number of hunt categories, and thereby maximum age, has been exhausted. The program 
will check to make sure that your total percentage does not exceed 100, and that your 
proportions and numbers make sense. Given that everything does make sense, the 
program will project a new Fall population - this one will have the additive mortality 
that you have just specified imposed. 

Population statistics for Fall, year= ... 
AGE FEMALES MALES 

0.5 
1.5 
2.5 

TOTALS 

nx proportion 

Annual growth rates 
Females= 

Followed by the query: 

nx 

Males= 

Satisfactory hunt? (yes-no-exit) 

proportion 
BOTH SEXES 

nx proportion 

Both sex= 

A yes response will lead forward toward a population projection for the next year, 
while a no steps back toward the previously unhunted Tentative Fall population. 

In either case, there is an opportunity to modify the previously established primary 
population attributes thus allowing the important aspects of "tuning and searching" 
described in Chapter 10. The re-specification of primary population attributes follows in 
the same manner as previously described, except that the program will echo existing 
attribute vectors so that you can know the current sta.tus of all attributes. 

These queries proceed as follows. 

Update primary population attributes? (yes-no-exit) 

If you enter yes the program will step through each of the attribute vectors 

Current clutch sizes, F(x) = 
(the FX vector) 
input new data? (yes-no-exit) 

If yes the program prompts with 
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Enter age-specific clutch sizes, F(x) 

if no, or following the above entry, the progarn continues with 

Current proportion males/clutch, r(x) = 
(the r(x) vector) 
input new data? (yes - no-exit) 

If yes the program prompts with 

Enter proportion males per clutch, r(x) 

If no , or following the above entry, the program continues with 

Current proportion breeding, b(x) = 
(the b(x) vector) 
input new data? (yes-no-exit) 

If yes the program prompts with 

Enter proportion breeding, b(x) 

If no, or following the above entry, the program continues with 

Current survival, p(x,i) = 
Females: 
(the p(x) vector for females) 
Males: 
(the p(x) vector for males) 
input new data? (yes-no-exit) 

If yes, the program prompts with 

Enter survival p(x) for Females 

and after you enter these data, 

Enter survival p(x) for Males 

Following the entry of these primary attributes, the program projects the 
population through Spring to the next Fall. 

67 

Successive annual iterations proceed as described with the program producing a 
Tentative Fall population, an opportunity to update primary population attributes , 
an opportunity to hunt this population, and again, an opportunity to update primary 
population attributes. 

vVhen the annual iterations have accumulated to the point where they equal the 
number of age classes specified, the programs' history matrix contains a full time-dynamic 
cohort. Beginning at this point and continuing after each accepted Fall population, the 
program will produce the request: 

Compute life-history analyses on Females? (yes-no) 
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Entry of a no will produce a similar question for males, while a yes will generate 
time-specific and cohort life history analyses for females as described in Chapters 2 and 3. 

The first of these life-history analyses follows the discussion in Appendix B. It 
consists of a linear regression analysis on ln nx da.ta, and reports survival statistics and a 
computed n( x )* vector that is back calculated to age x = 0. The program then transfers 
this hypothetical n(x )* vector to a life-table routine, and produces an expanded life-table 
as described in Chapter 3. These analyses are completed for a dia.gonal cohort, then for 
the column nx, ( i.e. a Time-Specific vector). The form of this report is: 

Time-dynamic life-history analysis 
Note that nx reported is a least-squares fit on diagonal nx 
x mean= 000 nx mean= 000 sumsqx = 000 
Slope= 000 CI= 000 intercept= 000 
Fat 1 and (maxage - 1) df = 000 for test on bb 
Attribute estimates and 951/. confidence limits for females cohort 0 
Instantaneous survival rate= 000 (000 - 000) 
Annual survival rate = 000 (000 - 000) 
Annual mortality rate= 000 (000 - 000) 
Estimated n(x) vector back-calculated to age 0 
age= 0 n(x) = 000 
age= 1 n(x) = 000 
age= 2 n(x) = 000 

The program then produces an expanded life-table based on the age structures from 
either nx or n(x)* , and the current Fx, Px, and f3x vectors . 

These analyses are keyed to Spring populations since the zero age class is required 
for complete analysis. Results will be produced at "half year" age steps. The cohort 
analysis is produced first: 

Time-dynamic life-history analysis 
Summary of life history information for "cohort" 
x nx lx dx qx px Lx tx 
0.0 
0.5 
1.0 
1.5 

X 

0.0 
0.5 
1.0 
1.5 

mx lxmx vx ex 

II 

ex 

11 Females 
Px 
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GRR Ro t Tc Tbar lambda r 

Followed by a similar set of analyses on the time-specific, column nx, and the 
associated survival and life table analysis. 

Time-specific life-history analysis 
Note that n(x) reported is a least-squares fit on column n(x)* 
x mean= 000 nx mean= 000 sumsqx = 000 
slope= 000 CI= 000 intercept= 000 
Fat 1 and (maxage - 1) df = 000 for test on bb 
Attribute estimates and 95% confidence limits for females cohort 0 
Instantaneous survival rate= 000 (000 - 000) 
Annual survival rate= 000 (000 - 000) 
Annual mortality rate= 000 (000 - 000) 
Estimates n(x) vector back calculated to age 0 
age= 0 n(x) = 000 
age= 1 n(x) = 000 
age= 2 n(x) = 000 

followed by the expanded life-table based on the column NX data. 

Summary of life history information for "cohort" 
x nx lx dx qx px Lx tx 
0.0 
0.5 
1.0 

X 

0.0 
0.5 
1.0 

mx lxmx 

GRR Ro 

vx ex 

t Tc Tbar lambda r 

"---" Females 
ex Px 

This life-history analysis on the females is followed by similar potential 
computations for males, 

Compute life-history analyses on males? (yes-no) 

then for both sex: 

Compute life-history analyses on both sex? (yes-no) 

69 
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Certain liberties are taken with demographic theory in these analyses, however, it is 
instructive to compute such statistics for these 3 categories, i.e. females, males, and both 
sex , particularly when widely varying sex-specific parameters are specified . These 
analyses are available after each annual iteration. As the continuing entry of no will 
become boring, a short cut ha.s been incorporated. In response to the successive queries 

n 

Compute life-history analyses on females? (yes-no) 
no 

Reply: 

Compute life-history analyses on males ? (yes-no) 
Reply: 
n 

n 

Compute life-history analyses on both sex? (yes - no) 
Reply : 

and responses indicated, the entry of any other character than y or n ( e.g. a skip) will 
cause an exit from the life-history loop . Thus, each between year set of requests reduces 
to: 

Hunt the tentative Fall population? (yes - no-ex i t) 

If the answer is n, then 

Compute life-history analyses on Females? (yes-no ) 

if the answer is other than yes or no then: 

Update primary population attributes? (yes-no - exit ) 

The program will continue to cycle until termination is indicated by entry of an 
exit in response to one of the queries where this is permitted. 

After you have run through a series of time steps in the projection, and then entered 
an exit in response to one of the queries, the program writes a final tt popmod.summ 
file. This file contains the density values for Females, then Males, and finally for Both 
sex. After writing this summary, the program closes all files and terminates. 


